Optimizing large-scale plasma simulations on persistent memory-based heterogeneous memory with effective data placement across memory hierarchy

Jie Ren, Jiaolin Luo, I. Peng, Kai Wu, Dong Li
{"title":"Optimizing large-scale plasma simulations on persistent memory-based heterogeneous memory with effective data placement across memory hierarchy","authors":"Jie Ren, Jiaolin Luo, I. Peng, Kai Wu, Dong Li","doi":"10.1145/3447818.3460356","DOIUrl":null,"url":null,"abstract":"Particle simulations of plasma are important for understanding plasma dynamics in space weather and fusion devices. However, production simulations that use billions and even trillions of computational particles require high memory capacity. In this work, we explore the latest persistent memory (PM) hardware to enable large-scale plasma simulations at unprecedented scales on a single machine. We use WarpX, an advanced plasma simulation code which is mission-critical and targets future exascale systems. We analyze the performance of WarpX on PM-based heterogeneous memory systems and propose to make the best use of memory hierarchy to avoid the impact of inferior performance of PM. We introduce a combination of static and dynamic data placement, and processor-cache prefetch mechanism for performance optimization. We develop a performance model to enable efficient data migration between PM and DRAM in the background, without reducing available bandwidth and parallelism to the application threads. We also build an analytical model to decide when to prefetch for the best use of caches. Our design achieves 66.4% performance improvement over the PM-only baseline and outperforms DRAM-cached, NUMA first-touch, and a state-of-the-art software solution by 38.8%, 45.1% and 83.3%, respectively.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Particle simulations of plasma are important for understanding plasma dynamics in space weather and fusion devices. However, production simulations that use billions and even trillions of computational particles require high memory capacity. In this work, we explore the latest persistent memory (PM) hardware to enable large-scale plasma simulations at unprecedented scales on a single machine. We use WarpX, an advanced plasma simulation code which is mission-critical and targets future exascale systems. We analyze the performance of WarpX on PM-based heterogeneous memory systems and propose to make the best use of memory hierarchy to avoid the impact of inferior performance of PM. We introduce a combination of static and dynamic data placement, and processor-cache prefetch mechanism for performance optimization. We develop a performance model to enable efficient data migration between PM and DRAM in the background, without reducing available bandwidth and parallelism to the application threads. We also build an analytical model to decide when to prefetch for the best use of caches. Our design achieves 66.4% performance improvement over the PM-only baseline and outperforms DRAM-cached, NUMA first-touch, and a state-of-the-art software solution by 38.8%, 45.1% and 83.3%, respectively.
在基于持久内存的异构内存上优化大规模等离子体模拟,实现跨内存层次的有效数据放置
等离子体的粒子模拟对于理解空间天气和聚变装置中的等离子体动力学具有重要意义。然而,使用数十亿甚至数万亿计算粒子的生产模拟需要高内存容量。在这项工作中,我们探索了最新的持久内存(PM)硬件,以便在一台机器上实现前所未有的大规模等离子体模拟。我们使用WarpX,这是一种先进的等离子体模拟代码,它是关键任务,目标是未来的百亿亿级系统。我们分析了WarpX在基于PM的异构存储系统上的性能,并提出了最好地利用内存层次结构来避免PM性能低下的影响。我们引入了静态和动态数据放置的组合,以及用于性能优化的处理器缓存预取机制。我们开发了一个性能模型,在后台实现PM和DRAM之间的有效数据迁移,而不会减少可用带宽和应用程序线程的并行性。我们还建立了一个分析模型来决定何时预取以最佳地利用缓存。我们的设计在纯pm基准上实现了66.4%的性能改进,并且分别比dram缓存、NUMA first-touch和最先进的软件解决方案高出38.8%、45.1%和83.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信