Near-optimal Linear Decision Trees for k-SUM and Related Problems

D. Kane, Shachar Lovett, S. Moran
{"title":"Near-optimal Linear Decision Trees for k-SUM and Related Problems","authors":"D. Kane, Shachar Lovett, S. Moran","doi":"10.1145/3285953","DOIUrl":null,"url":null,"abstract":"We construct near-optimal linear decision trees for a variety of decision problems in combinatorics and discrete geometry. For example, for any constant k, we construct linear decision trees that solve the k-SUM problem on n elements using O(n log2 n) linear queries. Moreover, the queries we use are comparison queries, which compare the sums of two k-subsets; when viewed as linear queries, comparison queries are 2k-sparse and have only { −1,0,1} coefficients. We give similar constructions for sorting sumsets A+B and for solving the SUBSET-SUM problem, both with optimal number of queries, up to poly-logarithmic terms. Our constructions are based on the notion of “inference dimension,” recently introduced by the authors in the context of active classification with comparison queries. This can be viewed as another contribution to the fruitful link between machine learning and discrete geometry, which goes back to the discovery of the VC dimension.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"30 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3285953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We construct near-optimal linear decision trees for a variety of decision problems in combinatorics and discrete geometry. For example, for any constant k, we construct linear decision trees that solve the k-SUM problem on n elements using O(n log2 n) linear queries. Moreover, the queries we use are comparison queries, which compare the sums of two k-subsets; when viewed as linear queries, comparison queries are 2k-sparse and have only { −1,0,1} coefficients. We give similar constructions for sorting sumsets A+B and for solving the SUBSET-SUM problem, both with optimal number of queries, up to poly-logarithmic terms. Our constructions are based on the notion of “inference dimension,” recently introduced by the authors in the context of active classification with comparison queries. This can be viewed as another contribution to the fruitful link between machine learning and discrete geometry, which goes back to the discovery of the VC dimension.
k-SUM的近最优线性决策树及相关问题
针对组合学和离散几何中的各种决策问题,构造了近似最优的线性决策树。例如,对于任意常数k,我们构建线性决策树,使用O(n log2 n)线性查询解决n个元素的k- sum问题。此外,我们使用的查询是比较查询,比较两个k子集的和;当被视为线性查询时,比较查询是2k-稀疏的,并且只有{−1,0,1}系数。我们给出了对集合A+B排序和求解子集- sum问题的类似结构,两者都具有最优查询数,直到多对数项。我们的结构基于“推理维度”的概念,该概念最近由作者在带有比较查询的主动分类上下文中引入。这可以被看作是机器学习和离散几何之间富有成效的联系的另一个贡献,这可以追溯到VC维的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信