Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang

F. R. Pratikto
{"title":"Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang","authors":"F. R. Pratikto","doi":"10.26593/jrsi.v12i1.6380.1-10","DOIUrl":null,"url":null,"abstract":"Model klasifikasi berbasis pembelajaran mesin untuk mendeteksi anomali biasanya didasarkan pada data dengan proporsi yang tidak seimbang. Proporsi data anomali biasanya jauh lebih kecil dibandingkan proporsi data non anomali. Ketidakseimbangan data menyebabkan model klasifikasi lebih banyak melakukan pembelajaran dengan data non anomali sehingga model bisa bias. Salah satu metode yang banyak digunakan untuk mengatasi masalah ini adalah oversampling sintetis. Oversampling sintetis umumnya didasarkan pada jarak dan didominasi metode berbasis k-Nearest Neighbor. Secara umum, pola data bisa berdasarkan jarak atau hubungan korelasional. Penelitian ini bertujuan menawarkan metode oversampling sintetis berdasarkan hubungan korelasional dalam bentuk distribusi probabilitas bersama dari data aslinya. Distribusi probabilitas bersama direpresentasikan dengan kopula Gaussian, sedangkan distribusi probabilitas marjinalnya direpresentasikan menggunakan tiga alternatf distribusi, yaitu sistem distribusi Pearson, distribusi empiris, dan sistem distribusi Metalog. Metode ini dibandingkan dengan beberapa metode oversampling lain yang umum digunakan untuk data yang tidak seimbang. Implementasi dilakukan dalam masalah kredit macet nasabah kartu kredit di suatu bank dengan metode klasifikasi k-Nearest Neighbor dengan ukuran kinerja akurasi total dengan metode validasi k-fold cross validation. Didapati bahwa model klasifikasi dengan metode oversampling usulan menggunakan distribusi marjinal Metalog memiliki akurasi total tertinggi.","PeriodicalId":32888,"journal":{"name":"Jurnal Rekayasa Sistem Industri","volume":"219 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Sistem Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26593/jrsi.v12i1.6380.1-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model klasifikasi berbasis pembelajaran mesin untuk mendeteksi anomali biasanya didasarkan pada data dengan proporsi yang tidak seimbang. Proporsi data anomali biasanya jauh lebih kecil dibandingkan proporsi data non anomali. Ketidakseimbangan data menyebabkan model klasifikasi lebih banyak melakukan pembelajaran dengan data non anomali sehingga model bisa bias. Salah satu metode yang banyak digunakan untuk mengatasi masalah ini adalah oversampling sintetis. Oversampling sintetis umumnya didasarkan pada jarak dan didominasi metode berbasis k-Nearest Neighbor. Secara umum, pola data bisa berdasarkan jarak atau hubungan korelasional. Penelitian ini bertujuan menawarkan metode oversampling sintetis berdasarkan hubungan korelasional dalam bentuk distribusi probabilitas bersama dari data aslinya. Distribusi probabilitas bersama direpresentasikan dengan kopula Gaussian, sedangkan distribusi probabilitas marjinalnya direpresentasikan menggunakan tiga alternatf distribusi, yaitu sistem distribusi Pearson, distribusi empiris, dan sistem distribusi Metalog. Metode ini dibandingkan dengan beberapa metode oversampling lain yang umum digunakan untuk data yang tidak seimbang. Implementasi dilakukan dalam masalah kredit macet nasabah kartu kredit di suatu bank dengan metode klasifikasi k-Nearest Neighbor dengan ukuran kinerja akurasi total dengan metode validasi k-fold cross validation. Didapati bahwa model klasifikasi dengan metode oversampling usulan menggunakan distribusi marjinal Metalog memiliki akurasi total tertinggi.
基于平均数据分类模型的合成样本重叠
检测异常的基于机器学习的分类模型通常是基于比例不平衡的数据。异常数据的比例通常比非异常数据的比例小得多。数据不平衡导致分类模型与非异常数据进行更多的研究,这样模型就有偏见。许多人用来解决这个问题的方法之一是合成样本。合成Oversampling通常基于距离和以k-Nearest为基础的方法。一般来说,数据模式可以基于距离或关联关系。本研究的目的是为原始数据的共享概率分布提供基于相关性关系的合成抽样方法。结合的概率分布是由高斯列列体所代表的,而边际概率分布则是用不同的分布式分布系统,即皮尔逊分布式分布系统、经验分布系统和元谱配送系统来代表的。这种方法与几种常见用于不平衡数据的方法进行比较。实施是在一家银行的不良信用问题上实现的,该银行采用的是对环境k-Nearest分类方法的总准确度与k-fold cross验证方法的验证。研究发现,采用边际元分布法的分类模型具有最高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信