Chengda Sun, Weimin Ding, Changding Liu, Weifeng Yao, Lilian Shi
{"title":"Improvement and Experiment for Online Measurement of Droplet Mass Deposit","authors":"Chengda Sun, Weimin Ding, Changding Liu, Weifeng Yao, Lilian Shi","doi":"10.13031/trans.14219","DOIUrl":null,"url":null,"abstract":"HighlightsA measurement device for droplet mass deposit was improved to enhance its performance.A wireless data transmission system was used to achieve convenient data sharing.A user interface was designed for display and analysis of the measurement results.A positioning mechanism was designed for arranging measurement devices promptly.Abstract. Measurement of droplet mass deposit is important in spray research and spray performance evaluation. In this article, an online measurement device for droplet mass deposit was improved based on the original design. The measurement resolution, precision, and data stability were improved by optimization of the structure and components and by data filtering. The resolution reached 0.00067 mg cm-2. Comparison tests showed that the relative error between the original device and an analytical balance was 6.68% to 8.48%, and the relative error between the improved device and the analytical balance was 5.24% to 6.15%. Compared with the original device, the relative error decreased and the precision improved. The relative error between the improved device and a tracer method was 5.11% to 6.99%, and the precision of the improved device was close to that of the tracer method. A positioning mechanism was designed to arrange measurement devices promptly in the test area, and a wireless data transmission system was used to achieve convenient data sharing. A user interface was designed to display the results in the form of tables and contour maps. Tests were conducted to measure the droplet mass deposit distribution of one nozzle, the droplet mass deposit distribution in a tree canopy, and the uniformity of the droplet mass deposit distribution in a small horizontal area. The results showed that the improved measurement device could provide data promptly and conveniently for spray research and spray performance evaluation. Keywords: Device improvement, Mass distribution, Wireless communication.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/trans.14219","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
HighlightsA measurement device for droplet mass deposit was improved to enhance its performance.A wireless data transmission system was used to achieve convenient data sharing.A user interface was designed for display and analysis of the measurement results.A positioning mechanism was designed for arranging measurement devices promptly.Abstract. Measurement of droplet mass deposit is important in spray research and spray performance evaluation. In this article, an online measurement device for droplet mass deposit was improved based on the original design. The measurement resolution, precision, and data stability were improved by optimization of the structure and components and by data filtering. The resolution reached 0.00067 mg cm-2. Comparison tests showed that the relative error between the original device and an analytical balance was 6.68% to 8.48%, and the relative error between the improved device and the analytical balance was 5.24% to 6.15%. Compared with the original device, the relative error decreased and the precision improved. The relative error between the improved device and a tracer method was 5.11% to 6.99%, and the precision of the improved device was close to that of the tracer method. A positioning mechanism was designed to arrange measurement devices promptly in the test area, and a wireless data transmission system was used to achieve convenient data sharing. A user interface was designed to display the results in the form of tables and contour maps. Tests were conducted to measure the droplet mass deposit distribution of one nozzle, the droplet mass deposit distribution in a tree canopy, and the uniformity of the droplet mass deposit distribution in a small horizontal area. The results showed that the improved measurement device could provide data promptly and conveniently for spray research and spray performance evaluation. Keywords: Device improvement, Mass distribution, Wireless communication.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.