{"title":"APPLICATION OF BREAKDOWN MECHANICS FOR PREDICTING THE RESOURCE OF AXIAL RADIAL HYDROTURBINS","authors":"E. Georgievskaia","doi":"10.30724/1998-9903-2018-20-9-10-71-78","DOIUrl":null,"url":null,"abstract":"To plan for timely reconstruction, modernization, repairs or replacement of equipment it is important to reliably predict the instant of its transition to the limiting state that determines the lifetime. Currently, there are no regulatory methods for assessing the lifetime of hydraulic turbines at the operation stage. The approach presented in this paper uses the fracture mechanics methods to build a long-term individual forecast of the dangerous development defects in the main elements of hydraulic turbines taking into account design, technological and operational features. The forecast is based on three-dimensional mathematical models that describe the change in the technical condition of the equipment during time under actual operation. The ANSYS software is used for calculations. Models take into account the size and position of detected or possible defects. Crack growth is determined by the combination of low- and high-frequency loads. The critical length of the crack corresponds to the instant of change of the crack development mechanism, when the failure risk increases sharply. Proposed approach can significantly reduce the possibility of unplanned or emergency shutdown of the hydraulic unit due to its destruction during the overhaul period.","PeriodicalId":33495,"journal":{"name":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30724/1998-9903-2018-20-9-10-71-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To plan for timely reconstruction, modernization, repairs or replacement of equipment it is important to reliably predict the instant of its transition to the limiting state that determines the lifetime. Currently, there are no regulatory methods for assessing the lifetime of hydraulic turbines at the operation stage. The approach presented in this paper uses the fracture mechanics methods to build a long-term individual forecast of the dangerous development defects in the main elements of hydraulic turbines taking into account design, technological and operational features. The forecast is based on three-dimensional mathematical models that describe the change in the technical condition of the equipment during time under actual operation. The ANSYS software is used for calculations. Models take into account the size and position of detected or possible defects. Crack growth is determined by the combination of low- and high-frequency loads. The critical length of the crack corresponds to the instant of change of the crack development mechanism, when the failure risk increases sharply. Proposed approach can significantly reduce the possibility of unplanned or emergency shutdown of the hydraulic unit due to its destruction during the overhaul period.