Displacements of automorphisms of free groups II: Connectivity of level sets and decision problems

S. Francaviglia, A. Martino
{"title":"Displacements of automorphisms of free groups II: Connectivity of level sets and decision problems","authors":"S. Francaviglia, A. Martino","doi":"10.1090/tran/8535","DOIUrl":null,"url":null,"abstract":"This is the second of two papers in which we investigate the properties of displacement functions of automorphisms of free groups (more generally, free products) on the Culler-Vogtmann Outer space $CV_n$ and its simplicial bordification. We develop a theory for both reducible and irreducible autormorphisms. As we reach the bordification of $CV_n$ we have to deal with general deformation spaces, for this reason we developed the theory in such generality. In first paper~\\cite{FMpartI} we studied general properties of the displacement functions, such as well-orderability of the spectrum and the topological characterization of min-points via partial train tracks (possibly at infinity). This paper is devoted to proving that for any automorphism (reducible or not) any level set of the displacement function is connected. As an application, this result provides a stopping procedure for brute force search algorithms in $CV_n$. We use this to reprove two known algorithmic results: the conjugacy problem for irreducible automorphisms and detecting irreducibility of automorphisms. Note: the two papers were originally packed together in the preprint arxiv:1703.09945. We decided to split that paper following the recommendations of a referee.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This is the second of two papers in which we investigate the properties of displacement functions of automorphisms of free groups (more generally, free products) on the Culler-Vogtmann Outer space $CV_n$ and its simplicial bordification. We develop a theory for both reducible and irreducible autormorphisms. As we reach the bordification of $CV_n$ we have to deal with general deformation spaces, for this reason we developed the theory in such generality. In first paper~\cite{FMpartI} we studied general properties of the displacement functions, such as well-orderability of the spectrum and the topological characterization of min-points via partial train tracks (possibly at infinity). This paper is devoted to proving that for any automorphism (reducible or not) any level set of the displacement function is connected. As an application, this result provides a stopping procedure for brute force search algorithms in $CV_n$. We use this to reprove two known algorithmic results: the conjugacy problem for irreducible automorphisms and detecting irreducibility of automorphisms. Note: the two papers were originally packed together in the preprint arxiv:1703.09945. We decided to split that paper following the recommendations of a referee.
自由群自同构的位移II:水平集的连通性与决策问题
本文是我们研究Culler-Vogtmann外空间$CV_n$上自由群(更一般地说是自由积)的自同构位移函数的性质及其简化定域的两篇论文中的第二篇。我们发展了一个关于可约和不可约自同态的理论。当我们达到$CV_n$的边界时,我们必须处理一般的变形空间,因此我们在这种一般性中发展了理论。在第一篇论文\cite{FMpartI}中,我们研究了位移函数的一般性质,如谱的良序性和通过部分火车轨道(可能在无穷远处)的最小点的拓扑表征。本文致力于证明对于任意自同构(可约或不可约),位移函数的任意水平集是连通的。作为一个应用程序,此结果为$CV_n$中的蛮力搜索算法提供了一个停止过程。我们用它来证明两个已知的算法结果:不可约自同构的共轭问题和检测自同构的不可约性。注:这两篇论文最初是打包在预印本arxiv:1703.09945中。根据一位裁判的建议,我们决定拆分那篇论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信