Realisation of large-scale photonic spiking hardware system

Ria Talukder, X. Porte, D. Brunner
{"title":"Realisation of large-scale photonic spiking hardware system","authors":"Ria Talukder, X. Porte, D. Brunner","doi":"10.1117/12.2633530","DOIUrl":null,"url":null,"abstract":"An efficient photonic hardware integration of neural networks can benefit us from the inherent properties of parallelism, high-speed data processing and potentially low energy consumption. In artificial neural networks (ANN), neurons are classified as static, single and continuous-valued. On contrary, information transmission and computation in biological neurons occur through spikes, where spike time and rate play a significant role. Spiking neural networks (SNNs) are thereby more biologically relevant along with additional benefits in terms of hardware friendliness and energy-efficiency. Considering all these advantages, we designed a photonic reservoir computer (RC) based on photonic recurrent spiking neural networks (SNN) i.e. a liquid state machine. It is a scalable proof-of-concept experiment, comprising more than 30,000 neurons. This system presents an excellent testbed for demonstrating next generation bio-inspired learning in photonic systems.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"106 1","pages":"122040A - 122040A-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient photonic hardware integration of neural networks can benefit us from the inherent properties of parallelism, high-speed data processing and potentially low energy consumption. In artificial neural networks (ANN), neurons are classified as static, single and continuous-valued. On contrary, information transmission and computation in biological neurons occur through spikes, where spike time and rate play a significant role. Spiking neural networks (SNNs) are thereby more biologically relevant along with additional benefits in terms of hardware friendliness and energy-efficiency. Considering all these advantages, we designed a photonic reservoir computer (RC) based on photonic recurrent spiking neural networks (SNN) i.e. a liquid state machine. It is a scalable proof-of-concept experiment, comprising more than 30,000 neurons. This system presents an excellent testbed for demonstrating next generation bio-inspired learning in photonic systems.
大规模光子脉冲硬件系统的实现
神经网络的光子硬件集成具有并行性、高速数据处理和潜在的低能耗等优点。在人工神经网络(ANN)中,神经元分为静态、单值和连续值。相反,生物神经元的信息传递和计算是通过峰发生的,其中峰的时间和速率起着重要的作用。因此,脉冲神经网络(snn)在生物学上更具相关性,并且在硬件友好性和能源效率方面具有额外的好处。考虑到这些优点,我们设计了一种基于光子循环尖峰神经网络(SNN)的光子库计算机(RC),即一种液态机。这是一个可扩展的概念验证实验,包含超过30,000个神经元。该系统为下一代光子系统的仿生学习提供了一个很好的实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信