Nanometer-Scale-Resolution Multichannel Separation of Spherical Particles in a Rocking Ratchet with Increasing Barrier Heights

Philippe M. Nicollier, C. Schwemmer, F. Ruggeri, D. Widmer, Xiaoyu Ma, A. Knoll
{"title":"Nanometer-Scale-Resolution Multichannel Separation of Spherical Particles in a Rocking Ratchet with Increasing Barrier Heights","authors":"Philippe M. Nicollier, C. Schwemmer, F. Ruggeri, D. Widmer, Xiaoyu Ma, A. Knoll","doi":"10.1103/PHYSREVAPPLIED.15.034006","DOIUrl":null,"url":null,"abstract":"We present a nanoparticle size-separation device based on a nanofluidic rocking Brownian motor. It features a ratchet-shaped electrostatic particle potential with increasing barrier heights along the particle transport direction. The sharp drop of the particle current with barrier height is exploited to separate a particle suspension into multiple sub-populations. By solving the Fokker--Planck equation, we show that the physics of the separation mechanism is governed by the energy landscape under forward tilt of the ratchet. For a given device geometry and sorting duration, the applied force is thus the only tunable parameter to increase the separation resolution. For the experimental conditions of 3.5 V applied voltage and 20 s sorting, we predict a separation resolution of $\\sim 2$ nm, supported by experimental data for separating spherical gold particles of nominal 80 and 100 nm diameters.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.034006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a nanoparticle size-separation device based on a nanofluidic rocking Brownian motor. It features a ratchet-shaped electrostatic particle potential with increasing barrier heights along the particle transport direction. The sharp drop of the particle current with barrier height is exploited to separate a particle suspension into multiple sub-populations. By solving the Fokker--Planck equation, we show that the physics of the separation mechanism is governed by the energy landscape under forward tilt of the ratchet. For a given device geometry and sorting duration, the applied force is thus the only tunable parameter to increase the separation resolution. For the experimental conditions of 3.5 V applied voltage and 20 s sorting, we predict a separation resolution of $\sim 2$ nm, supported by experimental data for separating spherical gold particles of nominal 80 and 100 nm diameters.
增加势垒高度的摇摆棘轮中球形颗粒的纳米尺度分辨率多通道分离
提出了一种基于纳米流体摇摆布朗电机的纳米颗粒粒度分离装置。它具有棘轮形状的静电粒子势,沿粒子输运方向势垒高度增加。利用粒子电流随势垒高度的急剧下降将粒子悬浮液分离成多个亚群。通过求解Fokker—Planck方程,我们证明了分离机制的物理性质是由棘轮向前倾斜下的能量景观所控制的。对于给定的设备几何形状和分选持续时间,施加的力因此是唯一可调的参数,以增加分离分辨率。在3.5 V电压和20 s分选的实验条件下,我们预测分离分辨率为$\sim 2$ nm,并得到了分离标称直径为80和100 nm的球形金颗粒的实验数据的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信