A Markovian approach to color image restoration based on space filling curves

A. Teschioni, C. Regazzoni, E. Stringa
{"title":"A Markovian approach to color image restoration based on space filling curves","authors":"A. Teschioni, C. Regazzoni, E. Stringa","doi":"10.1109/ICIP.1997.638808","DOIUrl":null,"url":null,"abstract":"A method for color image restoration based on the concept of Markov random fields and space-filling curves is presented. This work is a vectorial extension of a scalar deterministic solution for Markov random fields (MRFs). The proposed method represents an efficient alternative to the use of the vectorial deterministic solution for MRFs. The application of the space filling curve transformation allows one to apply the MRF algorithm to a scalar image with N/sup 3/ grey levels (typically N=256). The scalar MRF approach is based on expressing the energy function by means of the Euclidean norm in the vectorial space. This approach implies a high computational load. The new method involves a computational load lower than the vectorial case because the energy function is presented in the scalar space obtained after space filling curve based transformation.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"49 1","pages":"462-465 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.638808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A method for color image restoration based on the concept of Markov random fields and space-filling curves is presented. This work is a vectorial extension of a scalar deterministic solution for Markov random fields (MRFs). The proposed method represents an efficient alternative to the use of the vectorial deterministic solution for MRFs. The application of the space filling curve transformation allows one to apply the MRF algorithm to a scalar image with N/sup 3/ grey levels (typically N=256). The scalar MRF approach is based on expressing the energy function by means of the Euclidean norm in the vectorial space. This approach implies a high computational load. The new method involves a computational load lower than the vectorial case because the energy function is presented in the scalar space obtained after space filling curve based transformation.
基于空间填充曲线的彩色图像恢复马尔可夫方法
提出了一种基于马尔可夫随机场和空间填充曲线的彩色图像恢复方法。本文是马尔可夫随机场(mrf)的标量确定性解的向量推广。所提出的方法代表了一个有效的替代方案,以使用向量确定性的解决方案的mrf。空间填充曲线变换的应用允许将MRF算法应用于具有N/sup 3/灰度级(通常为N=256)的标量图像。标量MRF方法是基于在向量空间中用欧几里得范数表示能量函数。这种方法意味着很高的计算负荷。由于能量函数是在基于空间填充曲线的变换后得到的标量空间中表示的,因此该方法的计算量比矢量方法小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信