Suzanne N. Nowicki, S. Festal, S. Czarnecki, C. Hardgrove, P. Gasda
{"title":"The Effect of Boron on Active Neutron Measurements: Application for the Mars Science Laboratory Dynamic Albedo of Neutrons Instrument","authors":"Suzanne N. Nowicki, S. Festal, S. Czarnecki, C. Hardgrove, P. Gasda","doi":"10.1109/NSS/MIC42677.2020.9507973","DOIUrl":null,"url":null,"abstract":"The primary objective of the Dynamic Albedo of Neutrons (DAN) experiment on board the Mars Science Laboratory (MSL) rover Curiosity is to assess the hydrogen content as the rover traverses the Martian surface. Because hydrogen is a light element, it is an efficient moderator for neutrons. The method used to estimate the hydrogen content by the DAN instrument is to measure the thermal neutron count rate emitted from the surface of the soil using a Pulsed Neutron Generator as an activation source coupled with a thermal neutron detector. However, boron has a high cross section for thermal neutron capture and can affect the thermal neutron flux measured by the DAN instrument. Recently, the MSL ChemCam instrument has shown high concentrations of B in the veins of the Murray formation and Yellowknife Bay at concentrations of 100 to 500 ppm. We show that the number of neutrons that are captured in the Martian soil increases with increasing B, resulting in reduced count rates observed by the DAN thermal neutron detector, which can lead to an overestimate of the hydrogen content.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objective of the Dynamic Albedo of Neutrons (DAN) experiment on board the Mars Science Laboratory (MSL) rover Curiosity is to assess the hydrogen content as the rover traverses the Martian surface. Because hydrogen is a light element, it is an efficient moderator for neutrons. The method used to estimate the hydrogen content by the DAN instrument is to measure the thermal neutron count rate emitted from the surface of the soil using a Pulsed Neutron Generator as an activation source coupled with a thermal neutron detector. However, boron has a high cross section for thermal neutron capture and can affect the thermal neutron flux measured by the DAN instrument. Recently, the MSL ChemCam instrument has shown high concentrations of B in the veins of the Murray formation and Yellowknife Bay at concentrations of 100 to 500 ppm. We show that the number of neutrons that are captured in the Martian soil increases with increasing B, resulting in reduced count rates observed by the DAN thermal neutron detector, which can lead to an overestimate of the hydrogen content.