{"title":"Analysis of Residual Stress Distribution Characteristics at Nozzle Weld in Pressure Vessel and Pipe Components","authors":"S. Song, P. Dong","doi":"10.1115/pvp2019-93598","DOIUrl":null,"url":null,"abstract":"\n In order to achieve a better understanding of residual stress distribution characteristics associated with nozzle welds, this paper focuses on the identification of key parameters that contribute to the development of through-thickness membrane and bending components. This is because, as demonstrated in recent publications by the same authors (Song and Dong, 2016–2017), statically equivalent membrane and bending content in a given residual stress distribution play a far more critical role in fracture driving force calculation in Fitness-for-Service (FFS) assessment. To do so, a recent detailed investigation to residual stress distributions in nozzle welds is presented in this paper, covering nozzle radius to wall thickness ratio from 2 to 50, heat input from 400 J/mm to 1000 J/mm, weld joint types including set-in nozzle weld and set-on nozzle weld. By means of a residual stress decomposition technique, controlling parameters that govern through-thickness membrane and bending stresses have been identified, which are nozzle radius to wall thickness ratio (r/t) and linear heat input parameter (Q). Then, a unified functional form for representing through-thickness residual stress profile in nozzle weld is presented for supporting fitness for service assessment, e.g., by means of API 579-RP.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to achieve a better understanding of residual stress distribution characteristics associated with nozzle welds, this paper focuses on the identification of key parameters that contribute to the development of through-thickness membrane and bending components. This is because, as demonstrated in recent publications by the same authors (Song and Dong, 2016–2017), statically equivalent membrane and bending content in a given residual stress distribution play a far more critical role in fracture driving force calculation in Fitness-for-Service (FFS) assessment. To do so, a recent detailed investigation to residual stress distributions in nozzle welds is presented in this paper, covering nozzle radius to wall thickness ratio from 2 to 50, heat input from 400 J/mm to 1000 J/mm, weld joint types including set-in nozzle weld and set-on nozzle weld. By means of a residual stress decomposition technique, controlling parameters that govern through-thickness membrane and bending stresses have been identified, which are nozzle radius to wall thickness ratio (r/t) and linear heat input parameter (Q). Then, a unified functional form for representing through-thickness residual stress profile in nozzle weld is presented for supporting fitness for service assessment, e.g., by means of API 579-RP.