Isotopies of surfaces in 4–manifolds via banded unlink diagrams

IF 2 1区 数学
M. Hughes, Seungwon Kim, Maggie Miller
{"title":"Isotopies of surfaces in 4–manifolds via banded\nunlink diagrams","authors":"M. Hughes, Seungwon Kim, Maggie Miller","doi":"10.2140/GT.2020.24.1519","DOIUrl":null,"url":null,"abstract":"In this paper, we study surfaces embedded in $4$-manifolds. We give a complete set of moves relating banded unlink diagrams of isotopic surfaces in an arbitrary $4$-manifold. This extends work of Swenton and Kearton-Kurlin in $S^4$. As an application, we show that bridge trisections of isotopic surfaces in a trisected $4$-manifold are related by a sequence of perturbations and deperturbations, affirmatively proving a conjecture of Meier and Zupan. We also exhibit several isotopies of unit surfaces in $\\mathbb{C}P^2$ (i.e. spheres in the generating homology class), proving that many explicit unit surfaces are isotopic to the standard $\\mathbb{C}P^1$. This strengthens some previously known results about the Gluck twist in $S^4$, related to Kirby problem 4.23.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"10 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1519","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we study surfaces embedded in $4$-manifolds. We give a complete set of moves relating banded unlink diagrams of isotopic surfaces in an arbitrary $4$-manifold. This extends work of Swenton and Kearton-Kurlin in $S^4$. As an application, we show that bridge trisections of isotopic surfaces in a trisected $4$-manifold are related by a sequence of perturbations and deperturbations, affirmatively proving a conjecture of Meier and Zupan. We also exhibit several isotopies of unit surfaces in $\mathbb{C}P^2$ (i.e. spheres in the generating homology class), proving that many explicit unit surfaces are isotopic to the standard $\mathbb{C}P^1$. This strengthens some previously known results about the Gluck twist in $S^4$, related to Kirby problem 4.23.
4流形表面的带通链图同位素
在本文中,我们研究嵌入$4$-流形中的曲面。我们给出了任意$4$-流形中同位素表面的带状不连接图的一整套移动。这扩展了Swenton和keaton - kurlin在S^4$中的工作。作为一个应用,我们证明了$4$流形中同位素表面的桥式三切面是由一系列的微扰和微扰联系起来的,从而肯定地证明了Meier和Zupan的一个猜想。我们还展示了$\mathbb{C}P^2$中单位曲面的几个同位素(即生成同源类中的球体),证明了许多显式单位曲面是标准$\mathbb{C}P^1$的同位素。这加强了之前关于S^4$中的Gluck扭曲的一些已知结果,与Kirby问题4.23有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信