On a Group Functor Describing Invariants of Algebraic Surfaces

H. Dietrich, P. Moravec
{"title":"On a Group Functor Describing Invariants of Algebraic Surfaces","authors":"H. Dietrich, P. Moravec","doi":"10.14760/OWP-2019-08","DOIUrl":null,"url":null,"abstract":"Liedtke (2008) has introduced group functors $K$ and $\\tilde K$, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate $K$ and $\\tilde K$ to a group functor $\\tau$ arising in the construction of the non-abelian exterior square of a group. In contrast to $\\tilde K$, there exist efficient algorithms for constructing $\\tau$, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when $K(G,3)$ is a quotient of $\\tau(G)$, and when $\\tau(G)$ and $\\tilde K(G,3)$ are isomorphic.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14760/OWP-2019-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liedtke (2008) has introduced group functors $K$ and $\tilde K$, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate $K$ and $\tilde K$ to a group functor $\tau$ arising in the construction of the non-abelian exterior square of a group. In contrast to $\tilde K$, there exist efficient algorithms for constructing $\tau$, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when $K(G,3)$ is a quotient of $\tau(G)$, and when $\tau(G)$ and $\tilde K(G,3)$ are isomorphic.
描述代数曲面不变量的群函子
Liedtke(2008)引入了群函子$K$和$\tilde K$,它们用于描述复杂代数曲面的某些不变量。他证明了这些函子与中心扩展理论和舒尔乘子有关。在这项工作中,我们将$K$和$\tilde K$与群的非阿贝尔外方构造中的群函子$\tau$联系起来。与$\tilde K$相反,存在有效的算法来构造$\tau$,特别是对于多环基团。在计算机代数系统GAP的支持下,我们研究了$K(G,3)$何时是$\tau(G)$的商,$\tau(G)$和$\tilde K(G,3)$何时是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信