Comparison of the performance and energy consumption index of model-based controllers

L. I. Minchala-Ávila, K. Palacio-Baus, Juan P. Ortiz, Juan D. Valladolid, J. Ortega
{"title":"Comparison of the performance and energy consumption index of model-based controllers","authors":"L. I. Minchala-Ávila, K. Palacio-Baus, Juan P. Ortiz, Juan D. Valladolid, J. Ortega","doi":"10.1109/ETCM.2016.7750825","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of the performance of different control algorithms in two types of systems; one exhibiting fast dynamics and the other slow dynamics. The first control system regulates the speed of a DC motor, while the second control system regulates the temperature of an electrical heater. This systems' performance comparison pretends to evaluate the energy consumption, as well as the controllers' transient response in order to identify the best control strategy for each system. System models are obtained through the responses to a pseudorandom binary signal (PRBS) and the least squares fit method using an auto-regressive model with an exogenous variable (ARX). The implemented control algorithms used in this study are: pole placement regulator (state-space controller) with integral error processing, auto-tunable proportional-integral-derivative (PID) controller, neural PID controller, unconstrained model predictive control (MPC), fuzzy PID controller, neuro-fuzzy controller, bayesian controller and an optimal quadratic regulator (LQR). A detailed analysis of the performance and energy consumption index is performed, that allow the categorization of the control strategies in accordance with their performance.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"34 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a comparison of the performance of different control algorithms in two types of systems; one exhibiting fast dynamics and the other slow dynamics. The first control system regulates the speed of a DC motor, while the second control system regulates the temperature of an electrical heater. This systems' performance comparison pretends to evaluate the energy consumption, as well as the controllers' transient response in order to identify the best control strategy for each system. System models are obtained through the responses to a pseudorandom binary signal (PRBS) and the least squares fit method using an auto-regressive model with an exogenous variable (ARX). The implemented control algorithms used in this study are: pole placement regulator (state-space controller) with integral error processing, auto-tunable proportional-integral-derivative (PID) controller, neural PID controller, unconstrained model predictive control (MPC), fuzzy PID controller, neuro-fuzzy controller, bayesian controller and an optimal quadratic regulator (LQR). A detailed analysis of the performance and energy consumption index is performed, that allow the categorization of the control strategies in accordance with their performance.
基于模型的控制器性能和能耗指标的比较
本文比较了两类系统中不同控制算法的性能;一个表现出快速动态,另一个表现出缓慢动态。第一控制系统调节直流电机的速度,第二控制系统调节电加热器的温度。该系统的性能比较旨在评估能量消耗,以及控制器的瞬态响应,以确定每个系统的最佳控制策略。采用带外生变量(ARX)的自回归模型,通过对伪随机二值信号(PRBS)的响应和最小二乘拟合方法获得系统模型。本研究中所使用的控制算法有:极点放置调节器(状态空间控制器)与积分误差处理,自调谐比例-积分-导数(PID)控制器,神经PID控制器,无约束模型预测控制(MPC),模糊PID控制器,神经模糊控制器,贝叶斯控制器和最优二次调节器(LQR)。对性能和能耗指标进行了详细的分析,从而可以根据其性能对控制策略进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信