{"title":"The Grain Security Assessment Based on Improved TOPSIS Model in Yunnan Province China","authors":"K. Tong, Chaoji Yang","doi":"10.11648/j.ijfsb.20190403.11","DOIUrl":null,"url":null,"abstract":"Food security has become an important part of the security of all countries in the world, especially in a populous country like China. This paper analyzes the impact of different influencing factors on food security in Yunnan Province, and establishes an appropriate evaluation index system to analyze and evaluate the food security of Yunnan Province under the changing environment of 2001-2016. Firstly, the principal factors analysis method is used to divide the factors affecting food security in Yunnan Province into three levels: natural conditions, social development and technology level, and agricultural management level. Secondly, the entropy weight method is combined with the OWA operator to obtain the Yunnan Province. The main influencing factors are the total power of agricultural machinery, the amount of agricultural chemical fertilizer and the proportion of the primary industry's output value to GDP. Finally, using the improved gray correlation TOPSIS model, the food security in Yunnan Province has basically shown a trend of volatility growth since 2001. The calculation results show that since 2001, food security in Yunnan Province has shown a growth trend, the grain production has been effectively secured in Yunnan Province. In its three criteria levels, social development and technological level and agricultural management levels are steadily increasing, except for natural condition is volatile. In the future, Yunnan Province should reduce its dependence on mechanical power and fertilizer in the grain production process, further expand the development of green agriculture and organic agriculture, and ensure food safety production in many aspects.","PeriodicalId":14158,"journal":{"name":"International Journal of Food Science and Biotechnology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Science and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ijfsb.20190403.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Food security has become an important part of the security of all countries in the world, especially in a populous country like China. This paper analyzes the impact of different influencing factors on food security in Yunnan Province, and establishes an appropriate evaluation index system to analyze and evaluate the food security of Yunnan Province under the changing environment of 2001-2016. Firstly, the principal factors analysis method is used to divide the factors affecting food security in Yunnan Province into three levels: natural conditions, social development and technology level, and agricultural management level. Secondly, the entropy weight method is combined with the OWA operator to obtain the Yunnan Province. The main influencing factors are the total power of agricultural machinery, the amount of agricultural chemical fertilizer and the proportion of the primary industry's output value to GDP. Finally, using the improved gray correlation TOPSIS model, the food security in Yunnan Province has basically shown a trend of volatility growth since 2001. The calculation results show that since 2001, food security in Yunnan Province has shown a growth trend, the grain production has been effectively secured in Yunnan Province. In its three criteria levels, social development and technological level and agricultural management levels are steadily increasing, except for natural condition is volatile. In the future, Yunnan Province should reduce its dependence on mechanical power and fertilizer in the grain production process, further expand the development of green agriculture and organic agriculture, and ensure food safety production in many aspects.