{"title":"Detecting sparse rating spammer for accurate ranking of online recommendation","authors":"Hong Wang, Xiaomei Yu, Jun Zhao, Yuanjie Zheng","doi":"10.1504/IJCSE.2019.10020961","DOIUrl":null,"url":null,"abstract":"Ranking method for online recommendation system is challenging due to the rating sparsity and the spam rating attacks. The former can cause the well-known cold start problem while the latter complicates the recommendation task by detecting these unreasonable or biased ratings. In this paper, we treat the spam ratings as 'corruptions' which spatially distribute in a sparse pattern and model them with a L1 norm and a L2,1 norm. We show that these models can characterise the property of the original ratings by removing spam ratings and help to resolve the cold start problem. Furthermore, we propose a group-reputation-based method to re-weight the rating matrix and an iterative programming-based technique for optimising the ranking for online recommendation. We show that our optimisation methods outperform other recommendation approaches. Experimental results on four famous datasets reveal the superior performances of our methods.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2019.10020961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Ranking method for online recommendation system is challenging due to the rating sparsity and the spam rating attacks. The former can cause the well-known cold start problem while the latter complicates the recommendation task by detecting these unreasonable or biased ratings. In this paper, we treat the spam ratings as 'corruptions' which spatially distribute in a sparse pattern and model them with a L1 norm and a L2,1 norm. We show that these models can characterise the property of the original ratings by removing spam ratings and help to resolve the cold start problem. Furthermore, we propose a group-reputation-based method to re-weight the rating matrix and an iterative programming-based technique for optimising the ranking for online recommendation. We show that our optimisation methods outperform other recommendation approaches. Experimental results on four famous datasets reveal the superior performances of our methods.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.