{"title":"Norm attaining bilinear forms on the plane with the l1-norm","authors":"Sung Guen Kim","doi":"10.2478/ausm-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\\left( {\\mathcal{L}\\left( {^nE} \\right)} \\right)\\left( {{x_1}, \\ldots {x_n}} \\right) = \\left\\{ {T \\in \\mathcal{L}\\left( {^nE} \\right):\\left| {T\\left( {{x_1}, \\ldots {x_n}} \\right)} \\right| = \\left\\| T \\right\\| = 1} \\right\\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\left( {\mathcal{L}\left( {^nE} \right)} \right)\left( {{x_1}, \ldots {x_n}} \right) = \left\{ {T \in \mathcal{L}\left( {^nE} \right):\left| {T\left( {{x_1}, \ldots {x_n}} \right)} \right| = \left\| T \right\| = 1} \right\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.