Norm attaining bilinear forms on the plane with the l1-norm

Pub Date : 2022-11-01 DOI:10.2478/ausm-2022-0008
Sung Guen Kim
{"title":"Norm attaining bilinear forms on the plane with the l1-norm","authors":"Sung Guen Kim","doi":"10.2478/ausm-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\\left( {\\mathcal{L}\\left( {^nE} \\right)} \\right)\\left( {{x_1}, \\ldots {x_n}} \\right) = \\left\\{ {T \\in \\mathcal{L}\\left( {^nE} \\right):\\left| {T\\left( {{x_1}, \\ldots {x_n}} \\right)} \\right| = \\left\\| T \\right\\| = 1} \\right\\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For given unit vectors x1, · · ·, xn of a real Banach space E, we define NA(ℒ(nE))(x1,…xn)={ T∈ℒ(nE):| T(x1,…xn) |=‖ T ‖=1 }, NA\left( {\mathcal{L}\left( {^nE} \right)} \right)\left( {{x_1}, \ldots {x_n}} \right) = \left\{ {T \in \mathcal{L}\left( {^nE} \right):\left| {T\left( {{x_1}, \ldots {x_n}} \right)} \right| = \left\| T \right\| = 1} \right\}, where ℒ(nE) denotes the Banach space of all continuous n-linear forms on E endowed with the norm ||T|| = sup||xk||=1,1≤k≤n |T(x1, . . ., xn)|. In this paper, we classify NA(ℒ(2l12))((x1, x2), (y1, y2)) for unit vectors (x1, x2), (y1, y2)∈ l12, where l12 = ℝ2 with the l1-norm.
分享
查看原文
范数在平面上以11范数得到双线性形式
抽象为给定的单位向量x1,···,xn真正的巴拿赫空间E,我们定义NA(ℒ(nE)) (x1,……xn) = {T∈ℒ(nE): | T (x1,…xn) | =为T为= 1},NA \离开({\ mathcal {L} \离开({^ nE} \右)}\)\离开({{x_1}, \ ldots {x_n}} \右)左= \ \ {{T \ \ mathcal {L} \离开({^ nE} \右):\左| {T \离开({{x_1}, \ ldots {x_n}} \右)}\右左| = \ \ | T \ \ | = 1} \右\},在ℒ(nE)表示所有连续n-linear形式的巴拿赫空间E具有常态| | T | | =一口| | xk | | = 1, 1≤k≤n | T (x1,。,xn) |。本文对单位向量(x1, x2), (y1, y2)∈l12,其中l12 =具有l1范数的l2,我们对NA(f (2l12))((x1, x2), (y1, y2))进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信