Online Education Evaluation for Signal Processing Course Through Student Learning Pathways

K. H. Ng, S. Tatinati, Andy W. H. Khong
{"title":"Online Education Evaluation for Signal Processing Course Through Student Learning Pathways","authors":"K. H. Ng, S. Tatinati, Andy W. H. Khong","doi":"10.1109/ICASSP.2018.8461464","DOIUrl":null,"url":null,"abstract":"Impact of online learning sequences to forecast course outcomes for an undergraduate digital signal processing (DSP) course is studied in this work. A multi-modal learning schema based on deep-learning techniques with learning sequences, psychometric measures, and personality traits as input features is developed in this work. The aim is to identify any underlying patterns in the learning sequences and subsequently forecast the learning outcomes. Experiments are conducted on the data acquired for the DSP course taught over 13 teaching weeks to underpin the forecasting efficacy of various deep-learning models. Results showed that the proposed multi-modal schema yields better forecasting performance compared to existing frequency-based methods in existing literature. It is further observed that the psychometric measures incorporated in the proposed multimodal schema enhance the ability of distinguishing nuances in the input sequences when the forecasting task is highly dependent on human behavior.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"6458-6462"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Impact of online learning sequences to forecast course outcomes for an undergraduate digital signal processing (DSP) course is studied in this work. A multi-modal learning schema based on deep-learning techniques with learning sequences, psychometric measures, and personality traits as input features is developed in this work. The aim is to identify any underlying patterns in the learning sequences and subsequently forecast the learning outcomes. Experiments are conducted on the data acquired for the DSP course taught over 13 teaching weeks to underpin the forecasting efficacy of various deep-learning models. Results showed that the proposed multi-modal schema yields better forecasting performance compared to existing frequency-based methods in existing literature. It is further observed that the psychometric measures incorporated in the proposed multimodal schema enhance the ability of distinguishing nuances in the input sequences when the forecasting task is highly dependent on human behavior.
基于学生学习路径的信号处理课程在线教育评估
本文研究了在线学习序列对预测本科数字信号处理(DSP)课程结果的影响。本文开发了一种基于深度学习技术的多模态学习模式,以学习序列、心理测量和人格特征作为输入特征。其目的是识别学习序列中的任何潜在模式,并随后预测学习结果。对13个教学周的DSP课程所获取的数据进行实验,以验证各种深度学习模型的预测效果。结果表明,与现有文献中基于频率的预测方法相比,所提出的多模态模式具有更好的预测效果。进一步观察到,当预测任务高度依赖于人类行为时,纳入多模态模式的心理测量方法增强了识别输入序列中细微差别的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信