{"title":"Dual-band High-gain Metamaterial Based Resonant Cavity Antenna","authors":"Sourav Ghosh, S. Sahu","doi":"10.1109/ICCMC.2018.8487528","DOIUrl":null,"url":null,"abstract":"A technique is presented to design dual-band, high-gain metamaterial based resonant cavity antenna using frequency selective surface (FSS) layer. The radiating dielectric resonator (DR) is connected by a microstrip line and a rectangular slot is cut from the ground surface. Cylindrical dielectric resonator antenna (CDRA) is used as an elementary radiator. CDRA is excited by the microstrip line through the rectangular slot and it is radiating in the broadside direction at two adjacent frequency bands (S and C bands). Antenna simulation results confirmed it resonates in two adjacent bands centered at 3.9 GHz and 7.1 GHz. The gain of the DRA at these two bands are 2.43 dBi and 4.32 dBi respectively. With a single layer 5 × 5 array superstrate the gain of the proposed antenna increased by 8.02 dBi from 3.6 to 4.1 GHz frequency band and 1.05 dBi from 6.7 to 7.5 GHz frequency band. This high-gain dual-band DRA can be used for millimeter wave wireless communication, small satellite communication terminals.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"14 1","pages":"794-797"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A technique is presented to design dual-band, high-gain metamaterial based resonant cavity antenna using frequency selective surface (FSS) layer. The radiating dielectric resonator (DR) is connected by a microstrip line and a rectangular slot is cut from the ground surface. Cylindrical dielectric resonator antenna (CDRA) is used as an elementary radiator. CDRA is excited by the microstrip line through the rectangular slot and it is radiating in the broadside direction at two adjacent frequency bands (S and C bands). Antenna simulation results confirmed it resonates in two adjacent bands centered at 3.9 GHz and 7.1 GHz. The gain of the DRA at these two bands are 2.43 dBi and 4.32 dBi respectively. With a single layer 5 × 5 array superstrate the gain of the proposed antenna increased by 8.02 dBi from 3.6 to 4.1 GHz frequency band and 1.05 dBi from 6.7 to 7.5 GHz frequency band. This high-gain dual-band DRA can be used for millimeter wave wireless communication, small satellite communication terminals.