Micro/nano flows: vorticity generation

Q4 Engineering
T. Moulden
{"title":"Micro/nano flows: vorticity generation","authors":"T. Moulden","doi":"10.2495/CMEM-V7-N1-68-78","DOIUrl":null,"url":null,"abstract":"Vortical structures have been observed to develop in electrically driven fluid motion at the micro/nano scale, but no coherent theory has been put foreword in the literature to explain such a development. The present paper gives several results in a theory based upon the classical field equations. In particular, it is shown that the origin of vorticity production resides in the applied electric field interacting with any ion concentration gradients present in the fluid as defined by the vorticity equation. This is in addition to any viscous layer vorticity diffusion that may also exist in the flow.","PeriodicalId":36958,"journal":{"name":"International Journal of Computational Methods and Experimental Measurements","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods and Experimental Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V7-N1-68-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Vortical structures have been observed to develop in electrically driven fluid motion at the micro/nano scale, but no coherent theory has been put foreword in the literature to explain such a development. The present paper gives several results in a theory based upon the classical field equations. In particular, it is shown that the origin of vorticity production resides in the applied electric field interacting with any ion concentration gradients present in the fluid as defined by the vorticity equation. This is in addition to any viscous layer vorticity diffusion that may also exist in the flow.
微/纳米流动:涡度的产生
在微/纳米尺度上,在电驱动的流体运动中已经观察到涡状结构的发展,但在文献中没有提出连贯的理论来解释这种发展。本文给出了基于经典场方程的理论的几个结果。特别指出,涡度产生的根源在于外加电场与由涡度方程定义的流体中存在的任何离子浓度梯度相互作用。这是除了可能存在于流动中的任何粘性层涡度扩散之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
33 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信