MDN-Enabled SO for Vehicle Proactive Guidance in Ride-Hailing Systems: Minimizing Travel Distance and Wait Time

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
Xiaoming Li, Jie Gao, C. Wang, Xiao Huang, Yimin Nie
{"title":"MDN-Enabled SO for Vehicle Proactive Guidance in Ride-Hailing Systems: Minimizing Travel Distance and Wait Time","authors":"Xiaoming Li, Jie Gao, C. Wang, Xiao Huang, Yimin Nie","doi":"10.1109/MSMC.2022.3220315","DOIUrl":null,"url":null,"abstract":"Vehicle proactive guidance strategies are used by ride-hailing platforms to mitigate supply–demand imbalance across regions by directing idle vehicles to high-demand regions before the demands are realized. This article presents a data-driven stochastic optimization framework for computing idle vehicle guidance strategies. The objective is to minimize drivers’ idle travel distance, riders’ wait time, and the oversupply costs (OSCs) and undersupply costs (USCs) of the platform. Specifically, we design a novel neural network that integrates gated recurrent units (GRUs) with mixture density networks (MDNs) to capture the spatial-temporal features of the rider demand distribution.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"41 1","pages":"28-36"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2022.3220315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle proactive guidance strategies are used by ride-hailing platforms to mitigate supply–demand imbalance across regions by directing idle vehicles to high-demand regions before the demands are realized. This article presents a data-driven stochastic optimization framework for computing idle vehicle guidance strategies. The objective is to minimize drivers’ idle travel distance, riders’ wait time, and the oversupply costs (OSCs) and undersupply costs (USCs) of the platform. Specifically, we design a novel neural network that integrates gated recurrent units (GRUs) with mixture density networks (MDNs) to capture the spatial-temporal features of the rider demand distribution.
网约车系统中车辆主动引导的mdn支持SO:最小化行驶距离和等待时间
车辆主动引导策略是网约车平台在需求实现之前将闲置车辆引导到高需求地区,以缓解区域间的供需失衡。本文提出了一个数据驱动的随机优化框架,用于计算怠速车辆引导策略。其目标是最大限度地减少司机的空闲行程距离、乘客的等待时间以及平台的供过于求成本(OSCs)和供过于求成本(USCs)。具体而言,我们设计了一种新的神经网络,将门控循环单元(gru)与混合密度网络(mdn)相结合,以捕捉骑手需求分布的时空特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信