Numerical analysis of nonlinear wave propagation in a pantographic sheet

IF 1 Q4 MECHANICS
S. Eugster
{"title":"Numerical analysis of nonlinear wave propagation\nin a pantographic sheet","authors":"S. Eugster","doi":"10.2140/memocs.2021.9.293","DOIUrl":null,"url":null,"abstract":"To study nonlinear wave propagation phenomena in pantographic sheets, we propose a dynamic model that consists of an assembly of interconnected planar nonlinear Euler–Bernoulli beams. The interconnections are either formulated as perfect bilateral constraints or by onedimensional generalized force laws. Accordingly, the spatially discretized system is described by a differential algebraic system of equations, which is solved with an appropriate numerical solution strategy. We analyze various wave propagation phenomena by changing the kind of excitation.","PeriodicalId":45078,"journal":{"name":"Mathematics and Mechanics of Complex Systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/memocs.2021.9.293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 10

Abstract

To study nonlinear wave propagation phenomena in pantographic sheets, we propose a dynamic model that consists of an assembly of interconnected planar nonlinear Euler–Bernoulli beams. The interconnections are either formulated as perfect bilateral constraints or by onedimensional generalized force laws. Accordingly, the spatially discretized system is described by a differential algebraic system of equations, which is solved with an appropriate numerical solution strategy. We analyze various wave propagation phenomena by changing the kind of excitation.
非线性波在受电片中的传播的数值分析
为了研究受电片中的非线性波传播现象,我们提出了一个由相互连接的平面非线性欧拉-伯努利梁组成的动力学模型。这种相互关系可以用完美的双边约束来表示,也可以用一维广义力定律来表示。因此,将空间离散系统描述为微分代数方程组,并采用适当的数值求解策略对其进行求解。我们通过改变激发方式来分析各种波的传播现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
11
期刊介绍: MEMOCS is a publication of the International Research Center for the Mathematics and Mechanics of Complex Systems. It publishes articles from diverse scientific fields with a specific emphasis on mechanics. Articles must rely on the application or development of rigorous mathematical methods. The journal intends to foster a multidisciplinary approach to knowledge firmly based on mathematical foundations. It will serve as a forum where scientists from different disciplines meet to share a common, rational vision of science and technology. It intends to support and divulge research whose primary goal is to develop mathematical methods and tools for the study of complexity. The journal will also foster and publish original research in related areas of mathematics of proven applicability, such as variational methods, numerical methods, and optimization techniques. Besides their intrinsic interest, such treatments can become heuristic and epistemological tools for further investigations, and provide methods for deriving predictions from postulated theories. Papers focusing on and clarifying aspects of the history of mathematics and science are also welcome. All methodologies and points of view, if rigorously applied, will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信