Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations

Pub Date : 2020-12-01 DOI:10.2478/auom-2020-0036
Özgür Erdağ, Ö. Deveci, A. Shannon
{"title":"Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations","authors":"Özgür Erdağ, Ö. Deveci, A. Shannon","doi":"10.2478/auom-2020-0036","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.
分享
查看原文
Pell p-数性质的矩阵处理及其推广
摘要本文首先定义了Pell-Pell p序列,然后讨论了Pell-Pell p序列与Pell和Pell p序列之间的联系。此外,我们还利用生成矩阵的n次幂提供了一个新的Binet公式和一个新的组合表示。进一步,我们得到了Pell-Pell p数的指数表示形式,并发展了Pell-Pell p数与它们的恒量、行列式和之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信