Palindromic width of wreath products, metabelian groups, and max-n solvable groups

IF 0.1 Q4 MATHEMATICS
T. Riley, Andrew W. Sale
{"title":"Palindromic width of wreath products, metabelian groups, and max-n solvable groups","authors":"T. Riley, Andrew W. Sale","doi":"10.1515/gcc-2014-0009","DOIUrl":null,"url":null,"abstract":"Abstract A group has finite palindromic width if there exists n such that every element can be expressed as a product of n or fewer palindromic words. We show that if G has finite palindromic width with respect to some generating set, then so does G≀ℤ r $G \\wr \\mathbb {Z}^{r}$ . We also give a new, self-contained proof that finitely generated metabelian groups have finite palindromic width. Finally, we show that solvable groups satisfying the maximal condition on normal subgroups (max-n) have finite palindromic width.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"124 1","pages":"121 - 132"},"PeriodicalIF":0.1000,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract A group has finite palindromic width if there exists n such that every element can be expressed as a product of n or fewer palindromic words. We show that if G has finite palindromic width with respect to some generating set, then so does G≀ℤ r $G \wr \mathbb {Z}^{r}$ . We also give a new, self-contained proof that finitely generated metabelian groups have finite palindromic width. Finally, we show that solvable groups satisfying the maximal condition on normal subgroups (max-n) have finite palindromic width.
环圈产物、亚元群和最大n可解群的回文宽度
如果有n个元素可以表示为n个或更少的回文词的乘积,则群具有有限回文宽度。我们证明了如果G对于某个发电集具有有限的回文宽度,那么G献祭0 r $G \wr \mathbb {Z}^{r}$也是如此。我们还给出了有限生成的亚元群具有有限回文宽度的一个新的自包含证明。最后,我们证明了在正规子群(max-n)上满足极大条件的可解群具有有限的回文宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信