Heat transfer analysis on Engine oil-based hybrid nanofluid past an exponentially stretching permeable surface with Cu/Al2O3 additives

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
P. K. Pattnaik, Satyaranjan Mishra, S. Baag
{"title":"Heat transfer analysis on Engine oil-based hybrid nanofluid past an exponentially stretching permeable surface with Cu/Al2O3 additives","authors":"P. K. Pattnaik, Satyaranjan Mishra, S. Baag","doi":"10.1177/23977914221093846","DOIUrl":null,"url":null,"abstract":"The flow characteristic of the two-dimensional conducting hybrid nanofluid past an exponentially stretching permeable surface is analyzed. Flow through variable thicker surface for the free convective flow associated with transverse magnetic field in the flow phenomenon that enriches the study. The specialty of the model is the use of effective conductivity property considering the Mintsa model and the effective viscosity with the help of the Gharesim model for the enhancement of heat transport properties. Depending upon the recent applications related to industrial products, engineering as well as bio-medical science nanofluids are used as the best coolant. A comparative study is carried out for the transformed governing equations using both approximate analytical, that is, “Variational Iteration Method” (VIM), “Homotopy Perturbation Method” (HPM), and numerical techniques such as the in-build MATLAB command bvp5c. The simulated result in connection to the behavior of the physical parameters is deployed through graphs. The current outcomes validate the earlier established results in particular cases showing the conformity and the convergence of the methodology adopted. However, the observation shows that, shear rate retards with the significant enhancement in the particle concentration of the metal nanoparticles as well as the suction further the heat transfer rate enhanced. The fluid velocity profile boosts up for the increasing thermal buoyancy parameter whereas the reverse impact is rendered in the fluid temperature.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221093846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The flow characteristic of the two-dimensional conducting hybrid nanofluid past an exponentially stretching permeable surface is analyzed. Flow through variable thicker surface for the free convective flow associated with transverse magnetic field in the flow phenomenon that enriches the study. The specialty of the model is the use of effective conductivity property considering the Mintsa model and the effective viscosity with the help of the Gharesim model for the enhancement of heat transport properties. Depending upon the recent applications related to industrial products, engineering as well as bio-medical science nanofluids are used as the best coolant. A comparative study is carried out for the transformed governing equations using both approximate analytical, that is, “Variational Iteration Method” (VIM), “Homotopy Perturbation Method” (HPM), and numerical techniques such as the in-build MATLAB command bvp5c. The simulated result in connection to the behavior of the physical parameters is deployed through graphs. The current outcomes validate the earlier established results in particular cases showing the conformity and the convergence of the methodology adopted. However, the observation shows that, shear rate retards with the significant enhancement in the particle concentration of the metal nanoparticles as well as the suction further the heat transfer rate enhanced. The fluid velocity profile boosts up for the increasing thermal buoyancy parameter whereas the reverse impact is rendered in the fluid temperature.
含Cu/Al2O3添加剂的发动机油基混合纳米流体通过指数拉伸可渗透表面的传热分析
分析了二维导电杂化纳米流体通过指数拉伸可渗透表面的流动特性。流动中通过变厚表面的自由对流流动与横向磁场相关联,丰富了流动现象的研究。该模型的特点是考虑Mintsa模型的有效导电性和garesim模型的有效粘度来增强传热性能。根据最近与工业产品,工程以及生物医学科学相关的应用,纳米流体被用作最佳冷却剂。利用近似解析法,即“变分迭代法”(VIM)、“同伦摄动法”(HPM)和MATLAB内置命令bvp5c等数值技术,对变换后的控制方程进行了比较研究。模拟结果与物理参数的行为有关,通过图形进行部署。目前的结果在特定情况下验证了早先确定的结果,显示了所采用方法的一致性和收敛性。然而,观察表明,剪切速率随着金属纳米颗粒浓度的显著提高而减慢,吸力的增加进一步增强了传热速率。随着热浮力参数的增大,流体速度剖面增大,而流体温度则相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信