Executions in (Semi-)Integer Petri Nets are Compact Closed Categories

CoRR Pub Date : 2018-05-15 DOI:10.4204/EPTCS.287.7
F. Genovese, Jelle Herold
{"title":"Executions in (Semi-)Integer Petri Nets are Compact Closed Categories","authors":"F. Genovese, Jelle Herold","doi":"10.4204/EPTCS.287.7","DOIUrl":null,"url":null,"abstract":"In this work, we analyse Petri nets where places are allowed to have a negative number of tokens. For each net we build its correspondent category of executions, which is compact closed, and prove that this procedure is functorial. We moreover exhibit that a procedure to recover the original net from its category of executions exists, that it is again functorial, and that this gives rise to an adjoint pair. Finally, we use compact closeness to infer that allowing negative tokens in a Petri net makes the causal relations between transition firings non-trivial, and we use this to model interesting phenomena in economics and computer science.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"36 1","pages":"127-144"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.287.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work, we analyse Petri nets where places are allowed to have a negative number of tokens. For each net we build its correspondent category of executions, which is compact closed, and prove that this procedure is functorial. We moreover exhibit that a procedure to recover the original net from its category of executions exists, that it is again functorial, and that this gives rise to an adjoint pair. Finally, we use compact closeness to infer that allowing negative tokens in a Petri net makes the causal relations between transition firings non-trivial, and we use this to model interesting phenomena in economics and computer science.
(半)整数Petri网中的执行是紧致闭类
在这项工作中,我们分析了Petri网,其中允许有负数量的令牌。对于每一个网络,我们都建立了对应的执行类,该执行类是紧闭的,并证明了该过程是函函数的。此外,我们还证明,存在一种从其执行类别中恢复原始网的程序,它又是功能性的,这就产生了伴随对。最后,我们使用紧密性来推断,在Petri网中允许负令牌使得过渡触发之间的因果关系不琐碎,并且我们使用它来模拟经济学和计算机科学中的有趣现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信