{"title":"A Robust Autoparametrically Excited Angular Rate Sensor","authors":"Bhargav Gadhvi, F. Golnaraghi, B. Bahreyni","doi":"10.1109/Transducers50396.2021.9495549","DOIUrl":null,"url":null,"abstract":"We report, for the first time, a robust angular rate sensor that is operated at 2:1 Autoparametric Resonance (AR) with a wide frequency bandwidth at 3dB amplitude drop of 320.7 Hz. The sensor utilizes inherent forcing and inertial or elastic nonlinearities arising from electrostatic forces and fabrication imperfections respectively, to excite the sense mode via 2:1 AR causing a wider frequency response of the sense mode. The sensor is actuated electrostatically, and its output is sensed using variable gap capacitive electrodes. The sensor is tested on a rate table and a maximum scale factor of $38.99\\ \\mu \\mathrm{V}/^{\\circ}/\\mathrm{s}$ with a full-scale nonlinearity of 1.2%, dynamic range of ±270 °/s, and noise density of 0.042 °/s/√Hz are measured.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"15 1","pages":"1327-1330"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report, for the first time, a robust angular rate sensor that is operated at 2:1 Autoparametric Resonance (AR) with a wide frequency bandwidth at 3dB amplitude drop of 320.7 Hz. The sensor utilizes inherent forcing and inertial or elastic nonlinearities arising from electrostatic forces and fabrication imperfections respectively, to excite the sense mode via 2:1 AR causing a wider frequency response of the sense mode. The sensor is actuated electrostatically, and its output is sensed using variable gap capacitive electrodes. The sensor is tested on a rate table and a maximum scale factor of $38.99\ \mu \mathrm{V}/^{\circ}/\mathrm{s}$ with a full-scale nonlinearity of 1.2%, dynamic range of ±270 °/s, and noise density of 0.042 °/s/√Hz are measured.