Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko
{"title":"Classifying children with 3D depth cameras for enabling children's safety applications","authors":"Can Basaran, Hee-Jung Yoon, Ho-Kyeong Ra, S. Son, Taejoon Park, Jeonggil Ko","doi":"10.1145/2632048.2636074","DOIUrl":null,"url":null,"abstract":"In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632048.2636074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this work, we present ChildSafe, a classification system which exploits human skeletal features collected using a 3D depth camera to classify visual characteristics between children and adults. ChildSafe analyzes the histograms of training samples and implements a bin-boundary-based classifier. We train and evaluate ChildSafe using a large dataset of visual samples collected from 150 elementary school children and 43 adults, ranging in the ages of 7 and 50. Our results suggest that ChildSafe successfully detects children with a proper classification rate of up to 97%, a false negative rate of as low as 1.82%, and a low false positive rate of 1.46%. We envision this work as an effective sub-system for designing various child protection applications.