Open Set Domain Adaptation

Pau Panareda Busto, Juergen Gall
{"title":"Open Set Domain Adaptation","authors":"Pau Panareda Busto, Juergen Gall","doi":"10.1109/ICCV.2017.88","DOIUrl":null,"url":null,"abstract":"When the training and the test data belong to different domains, the accuracy of an object classifier is significantly reduced. Therefore, several algorithms have been proposed in the last years to diminish the so called domain shift between datasets. However, all available evaluation protocols for domain adaptation describe a closed set recognition task, where both domains, namely source and target, contain exactly the same object classes. In this work, we also explore the field of domain adaptation in open sets, which is a more realistic scenario where only a few categories of interest are shared between source and target data. Therefore, we propose a method that fits in both closed and open set scenarios. The approach learns a mapping from the source to the target domain by jointly solving an assignment problem that labels those target instances that potentially belong to the categories of interest present in the source dataset. A thorough evaluation shows that our approach outperforms the state-of-the-art.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"30 1","pages":"754-763"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"457","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 457

Abstract

When the training and the test data belong to different domains, the accuracy of an object classifier is significantly reduced. Therefore, several algorithms have been proposed in the last years to diminish the so called domain shift between datasets. However, all available evaluation protocols for domain adaptation describe a closed set recognition task, where both domains, namely source and target, contain exactly the same object classes. In this work, we also explore the field of domain adaptation in open sets, which is a more realistic scenario where only a few categories of interest are shared between source and target data. Therefore, we propose a method that fits in both closed and open set scenarios. The approach learns a mapping from the source to the target domain by jointly solving an assignment problem that labels those target instances that potentially belong to the categories of interest present in the source dataset. A thorough evaluation shows that our approach outperforms the state-of-the-art.
开集域自适应
当训练数据和测试数据属于不同的域时,目标分类器的准确率会显著降低。因此,在过去的几年里,已经提出了几种算法来减少数据集之间所谓的域转移。然而,所有可用的领域自适应评估协议都描述了一个封闭集识别任务,其中两个领域,即源和目标,包含完全相同的对象类。在这项工作中,我们还探索了开放集中的域适应领域,这是一个更现实的场景,源数据和目标数据之间只有少数兴趣类别共享。因此,我们提出了一种适合于封闭和开放场景的方法。该方法通过联合解决一个分配问题来学习从源域到目标域的映射,该分配问题标记那些可能属于源数据集中存在的感兴趣类别的目标实例。全面的评估表明,我们的方法优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信