Polyol method and surface functionalization of silver nanowires using bovine serum albumin for surface-enhanced Raman scattering application

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Khoa Tien Cao, Khoi Khac Tran, H. Do
{"title":"Polyol method and surface functionalization of silver nanowires using bovine serum albumin for surface-enhanced Raman scattering application","authors":"Khoa Tien Cao, Khoi Khac Tran, H. Do","doi":"10.55713/jmmm.v33i3.1727","DOIUrl":null,"url":null,"abstract":"Silver nanowires (AgNWs) with diverse applications are attracting the attention of many researchers around the world. In this study, we applied the polyol method to synthesize AgNWs based on Polyvinyl-pyrrolidone (PVP) average molecular weight of 360,000, ethylene glycol (EG), and AgNO3 precursor with a fresh AgCl preparation. To synthesize this material we first investigate optimal parameters through the influence of reaction temperature, time of creating AgNWs using plasmon absorption spectroscopy, and scanning electron microscope (SEM) images. The obtained AgNWs are high efficiency, large aspect ratio, and good dispersion in the solution. This sample continues to be conducted to surface functionalization by bovine serum albumin (BSA) molecules to develop AgNW@BSA complexes. We apply UV-Vis absorption spectroscopy to evaluate the optical properties of these complexes. Besides, we conduct research on the application of this material on surface-enhanced Raman scattering (SERS). The results show that the optical properties of these complexes obtained from UV-Vis absorption spectroscopy are comparable with the numerical modeling. In addition, AgNWs can be used to study the effective surface-enhanced Raman scattering (SERS) to detect methylene blue (MB) molecules at low concentrations as 10-12 M.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"2 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i3.1727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silver nanowires (AgNWs) with diverse applications are attracting the attention of many researchers around the world. In this study, we applied the polyol method to synthesize AgNWs based on Polyvinyl-pyrrolidone (PVP) average molecular weight of 360,000, ethylene glycol (EG), and AgNO3 precursor with a fresh AgCl preparation. To synthesize this material we first investigate optimal parameters through the influence of reaction temperature, time of creating AgNWs using plasmon absorption spectroscopy, and scanning electron microscope (SEM) images. The obtained AgNWs are high efficiency, large aspect ratio, and good dispersion in the solution. This sample continues to be conducted to surface functionalization by bovine serum albumin (BSA) molecules to develop AgNW@BSA complexes. We apply UV-Vis absorption spectroscopy to evaluate the optical properties of these complexes. Besides, we conduct research on the application of this material on surface-enhanced Raman scattering (SERS). The results show that the optical properties of these complexes obtained from UV-Vis absorption spectroscopy are comparable with the numerical modeling. In addition, AgNWs can be used to study the effective surface-enhanced Raman scattering (SERS) to detect methylene blue (MB) molecules at low concentrations as 10-12 M.
多元醇法及牛血清白蛋白表面功能化银纳米线的表面增强拉曼散射应用
银纳米线具有多种用途,引起了世界各国研究人员的广泛关注。本研究以平均分子量为36万的聚乙烯吡罗烷酮(PVP)、乙二醇(EG)和AgNO3为前体,以新鲜AgCl为原料,采用多元醇法制备了AgNWs。为了合成这种材料,我们首先通过反应温度、等离子体吸收光谱法生成AgNWs的时间和扫描电子显微镜(SEM)图像来研究最佳参数的影响。所制得的AgNWs具有效率高、长径比大、在溶液中的分散性好等特点。该样品继续通过牛血清白蛋白(BSA)分子进行表面功能化以开发AgNW@BSA复合物。我们应用紫外可见吸收光谱来评价这些配合物的光学性质。此外,我们还研究了该材料在表面增强拉曼散射(SERS)中的应用。结果表明,用紫外-可见吸收光谱法得到的配合物的光学性质与数值模拟结果相当。此外,AgNWs可用于研究低浓度(10-12 M)亚甲基蓝(MB)分子的有效表面增强拉曼散射(SERS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信