Hybrid Knowledge Engineering Leveraging a Robust ML Framework to Produce an Assassination Dataset

Abigail Sticha, P. Brenner
{"title":"Hybrid Knowledge Engineering Leveraging a Robust ML Framework to Produce an Assassination Dataset","authors":"Abigail Sticha, P. Brenner","doi":"10.18653/v1/2022.case-1.15","DOIUrl":null,"url":null,"abstract":"Social and political researchers require robust event datasets to conduct data-driven analysis, an example being the need for trigger event datasets to analyze under what conditions and in what patterns certain trigger-type events increase the probability of mass killings. Fortunately, NLP and ML can be leveraged to create these robust datasets. In this paper we (i) outline a robust ML framework that prioritizes understandability through visualizations and generalizability through the ability to implement different ML algorithms, (ii) perform a comparative analysis of these ML tools within the framework for the coup trigger, (iii) leverage our ML framework along with a unique combination of NLP tools, such as NER and knowledge graphs, to produce a dataset for the the assassination trigger, and (iv) make this comprehensive, consolidated, and cohesive assassination dataset publicly available to provide temporal data for understanding political violence as well as training data for further socio-political research.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"38 1","pages":"106-116"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social and political researchers require robust event datasets to conduct data-driven analysis, an example being the need for trigger event datasets to analyze under what conditions and in what patterns certain trigger-type events increase the probability of mass killings. Fortunately, NLP and ML can be leveraged to create these robust datasets. In this paper we (i) outline a robust ML framework that prioritizes understandability through visualizations and generalizability through the ability to implement different ML algorithms, (ii) perform a comparative analysis of these ML tools within the framework for the coup trigger, (iii) leverage our ML framework along with a unique combination of NLP tools, such as NER and knowledge graphs, to produce a dataset for the the assassination trigger, and (iv) make this comprehensive, consolidated, and cohesive assassination dataset publicly available to provide temporal data for understanding political violence as well as training data for further socio-political research.
利用鲁棒ML框架生成暗杀数据集的混合知识工程
社会和政治研究人员需要强大的事件数据集来进行数据驱动的分析,例如需要触发事件数据集来分析在什么条件和什么模式下某些触发类型的事件会增加大规模杀戮的可能性。幸运的是,可以利用NLP和ML来创建这些健壮的数据集。在本文中,我们(i)概述了一个强大的ML框架,通过可视化和通过实现不同ML算法的能力来优先考虑可理解性,(ii)在政变触发的框架内对这些ML工具进行比较分析,(iii)利用我们的ML框架以及NLP工具的独特组合,如NER和知识图,为暗杀触发生成数据集,(iv)使其全面。统一的、有凝聚力的暗杀数据集公开可用,为理解政治暴力提供时间数据,也为进一步的社会政治研究提供训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信