Optimization of regularization parameter of inversion in particle sizing using light extinction method

Mingxu Su , Feng Xu , Xiaoshu Cai , Kuanfang Ren , Jianqi Shen
{"title":"Optimization of regularization parameter of inversion in particle sizing using light extinction method","authors":"Mingxu Su ,&nbsp;Feng Xu ,&nbsp;Xiaoshu Cai ,&nbsp;Kuanfang Ren ,&nbsp;Jianqi Shen","doi":"10.1016/j.cpart.2007.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-validation (GCV) and L-curve criteria with the Twomey–NNLS algorithm in parameter optimization. Numerical simulation and experimental validation show that the resistance of the newly developed algorithms to measurement errors can be improved leading to stable inversion results for unimodal particle size distribution.</p></div>","PeriodicalId":100239,"journal":{"name":"China Particuology","volume":"5 4","pages":"Pages 295-299"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpart.2007.04.005","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Particuology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672251507000772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-validation (GCV) and L-curve criteria with the Twomey–NNLS algorithm in parameter optimization. Numerical simulation and experimental validation show that the resistance of the newly developed algorithms to measurement errors can be improved leading to stable inversion results for unimodal particle size distribution.

用光消光法优化粒度反演正则化参数
在消光法粒度测量中,正则化参数在正则化求解不适定逆问题中起着重要作用。我们将广义交叉验证(GCV)和l曲线准则与Twomey-NNLS算法结合起来进行参数优化。数值模拟和实验验证表明,该算法可以提高对测量误差的抵抗能力,从而获得稳定的单峰粒度分布反演结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信