Non-Adiabatic Holonomic Quantum Gates

Vera Neef, Julien Pinske, M. Heinrich, Stefan Scheel, A. Szameit
{"title":"Non-Adiabatic Holonomic Quantum Gates","authors":"Vera Neef, Julien Pinske, M. Heinrich, Stefan Scheel, A. Szameit","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10231394","DOIUrl":null,"url":null,"abstract":"Implementing quantum gates as non-Abelian holonomies, a class of topologically protected unitary operators, is a particularly promising paradigm for the design of intrinsically stable quantum computers [1]. In contrast to dynamic phases, the geometric phase accumulated by a quantum system propagating through a Hilbert space $\\mathcal{H}$ depends exclusively on its path. In general, geometric phases can exhibit arbitrary dimensionality. Wilczek and Zee introduced the idea of multi-dimensional, non-Abelian geometric phases - so called holonomies [2]. Anandan later dropped the requirement of adiabaticity to create holonomies, that are truly time-independent [3]. Non-adiabatic holonomies rely on a subspace $\\mathcal{H}_{\\text{geo}}$ of the Hilbert-space that is spanned by states $\\{\\vert \\Phi_{k}\\rangle\\}_{k}$ that fulfill $(\\Phi_{k}\\vert \\hat{H}\\vert \\Phi_{j}\\rangle=0$, where $\\hat{H}$ is the system's Hamiltonian. Restricting the propagation to $\\mathcal{H}_{\\text{geo}}$ ensures parallel transport and, thus, a purely geometric phase (see Fig. 1a) [4], [5]. Quantum optics constitutes a particularly versatile platform for quantum information processing, and in particular for the construction of non-adiabatic holonomic quantum computers: In addition to integration and miniaturization provided by the platform, the bosonic nature of photons also conveniently allows for multiple excitations of the same mode, readily expanding $\\mathcal{H}_{\\text{geo}}$ and enabling the synthesis of holonomies from higher symmetry groups $\\mathrm{U}(N)$ as larger and more capable computational units [6], [7].","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"32 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10231394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Implementing quantum gates as non-Abelian holonomies, a class of topologically protected unitary operators, is a particularly promising paradigm for the design of intrinsically stable quantum computers [1]. In contrast to dynamic phases, the geometric phase accumulated by a quantum system propagating through a Hilbert space $\mathcal{H}$ depends exclusively on its path. In general, geometric phases can exhibit arbitrary dimensionality. Wilczek and Zee introduced the idea of multi-dimensional, non-Abelian geometric phases - so called holonomies [2]. Anandan later dropped the requirement of adiabaticity to create holonomies, that are truly time-independent [3]. Non-adiabatic holonomies rely on a subspace $\mathcal{H}_{\text{geo}}$ of the Hilbert-space that is spanned by states $\{\vert \Phi_{k}\rangle\}_{k}$ that fulfill $(\Phi_{k}\vert \hat{H}\vert \Phi_{j}\rangle=0$, where $\hat{H}$ is the system's Hamiltonian. Restricting the propagation to $\mathcal{H}_{\text{geo}}$ ensures parallel transport and, thus, a purely geometric phase (see Fig. 1a) [4], [5]. Quantum optics constitutes a particularly versatile platform for quantum information processing, and in particular for the construction of non-adiabatic holonomic quantum computers: In addition to integration and miniaturization provided by the platform, the bosonic nature of photons also conveniently allows for multiple excitations of the same mode, readily expanding $\mathcal{H}_{\text{geo}}$ and enabling the synthesis of holonomies from higher symmetry groups $\mathrm{U}(N)$ as larger and more capable computational units [6], [7].
非绝热完整量子门
将量子门实现为非阿贝尔完整,一类拓扑保护的酉算子,是设计本质稳定量子计算机的一个特别有前途的范例[1]。与动态相位相反,通过希尔伯特空间$\mathcal{H}$传播的量子系统积累的几何相位完全取决于其路径。一般来说,几何相位可以表现出任意的维度。Wilczek和Zee引入了多维、非阿贝尔几何相位的概念——即所谓的完整组态[2]。Anandan后来放弃了绝热性的要求来创建真正与时间无关的完整系统[3]。非绝热完整依赖于希尔伯特空间的子空间$\mathcal{H}_{\text{geo}}$,该空间由满足$(\Phi_{k}\vert \hat{H}\vert \Phi_{j}\rangle=0$的状态$\{\vert \Phi_{k}\rangle\}_{k}$张成,其中$\hat{H}$是系统的哈密顿量。将传播限制为$\mathcal{H}_{\text{geo}}$确保了平行传输,从而保证了纯几何相位(见图1a)[4],[5]。量子光学构成了一个特别通用的量子信息处理平台,特别是对于非绝热完整量子计算机的构建:除了平台提供的集成和小型化之外,光子的玻色子性质也方便地允许同一模式的多次激发,容易扩展$\mathcal{H}_{\text{geo}}$,并使更高对称群$\mathrm{U}(N)$的完整合成成为更大,更有能力的计算单元[6],[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信