Design and Analysis of Nanosheet Field-Effect Transistor for High-Speed Switching Applications

4区 材料科学 Q2 Materials Science
Ravi Kumar, E. S. Kumar, S. Vijayalakshmi, Dumpa Prasad, A. Mohamedyaseen, S. Choubey, N. Vignesh, A. Johnson Santhosh
{"title":"Design and Analysis of Nanosheet Field-Effect Transistor for High-Speed Switching Applications","authors":"Ravi Kumar, E. S. Kumar, S. Vijayalakshmi, Dumpa Prasad, A. Mohamedyaseen, S. Choubey, N. Vignesh, A. Johnson Santhosh","doi":"10.1155/2023/6460617","DOIUrl":null,"url":null,"abstract":"Self-heating effects and short channel effects are unappealing side effects of multigate devices like gate-all-around nanowire-field-effect transistors (FETs) and fin FETs, limiting their performance and posing reliability difficulties. This paper proposes the use of the novel nanosheet FET (NsFET) for complementary metal-oxide semiconductor technology nodes that are changing. Design guidelines and basic measurements for the sub-nm node are displayed alongside a brief introduction to the roadmap to the sub-nm regime and electronic market. The device had an ION/IOFF ratio of more than 105, according to the proposed silicon-based NsFET. For low-power and high-switching applications, the results were verified and achieved quite well. When an NS width increases, although, the threshold voltage (Vth) tends to fall, resulting in a loss in subthreshold effectiveness. Furthermore, the proposed device performance, like subthreshold swing ION/IOFF, was studied with a conventional 2D FET. Hence, the proposed NsFET can be a frontrunner for ultra-low power and high-speed switching applications.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/6460617","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Self-heating effects and short channel effects are unappealing side effects of multigate devices like gate-all-around nanowire-field-effect transistors (FETs) and fin FETs, limiting their performance and posing reliability difficulties. This paper proposes the use of the novel nanosheet FET (NsFET) for complementary metal-oxide semiconductor technology nodes that are changing. Design guidelines and basic measurements for the sub-nm node are displayed alongside a brief introduction to the roadmap to the sub-nm regime and electronic market. The device had an ION/IOFF ratio of more than 105, according to the proposed silicon-based NsFET. For low-power and high-switching applications, the results were verified and achieved quite well. When an NS width increases, although, the threshold voltage (Vth) tends to fall, resulting in a loss in subthreshold effectiveness. Furthermore, the proposed device performance, like subthreshold swing ION/IOFF, was studied with a conventional 2D FET. Hence, the proposed NsFET can be a frontrunner for ultra-low power and high-speed switching applications.
高速开关用纳米片场效应晶体管的设计与分析
自热效应和短沟道效应是栅极纳米线场效应晶体管(fet)和翅片fet等多栅极器件的不良副作用,限制了它们的性能并带来可靠性困难。本文提出将新型纳米片场效应管(NsFET)用于不断变化的互补金属氧化物半导体技术节点。亚纳米节点的设计指南和基本测量与亚纳米制度和电子市场的路线图的简要介绍一起展示。根据所提出的硅基NsFET,该器件的离子/IOFF比超过105。对于低功耗和高开关应用,结果得到了很好的验证和实现。然而,当NS宽度增加时,阈值电压(Vth)趋于下降,导致亚阈值有效性的损失。此外,采用传统的二维场效应管研究了该器件的亚阈值摆动离子/IOFF等性能。因此,所提出的NsFET可以成为超低功耗和高速开关应用的领跑者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanomaterials
Journal of Nanomaterials 工程技术-材料科学:综合
CiteScore
6.10
自引率
0.00%
发文量
577
审稿时长
2.3 months
期刊介绍: The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信