Abed C. Malti, R. Hartley, A. Bartoli, Jae-Hak Kim
{"title":"Monocular Template-Based 3D Reconstruction of Extensible Surfaces with Local Linear Elasticity","authors":"Abed C. Malti, R. Hartley, A. Bartoli, Jae-Hak Kim","doi":"10.1109/CVPR.2013.200","DOIUrl":null,"url":null,"abstract":"We propose a new approach for template-based extensible surface reconstruction from a single view. We extend the method of isometric surface reconstruction and more recent work on conformal surface reconstruction. Our approach relies on the minimization of a proposed stretching energy formalized with respect to the Poisson ratio parameter of the surface. We derive a patch-based formulation of this stretching energy by assuming local linear elasticity. This formulation unifies geometrical and mechanical constraints in a single energy term. We prevent local scale ambiguities by imposing a set of fixed boundary 3D points. We experimentally prove the sufficiency of this set of boundary points and demonstrate the effectiveness of our approach on different developable and non-developable surfaces with a wide range of extensibility.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"34 1","pages":"1522-1529"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
We propose a new approach for template-based extensible surface reconstruction from a single view. We extend the method of isometric surface reconstruction and more recent work on conformal surface reconstruction. Our approach relies on the minimization of a proposed stretching energy formalized with respect to the Poisson ratio parameter of the surface. We derive a patch-based formulation of this stretching energy by assuming local linear elasticity. This formulation unifies geometrical and mechanical constraints in a single energy term. We prevent local scale ambiguities by imposing a set of fixed boundary 3D points. We experimentally prove the sufficiency of this set of boundary points and demonstrate the effectiveness of our approach on different developable and non-developable surfaces with a wide range of extensibility.