On the affine recursion on R_d+ in the critical case

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
S. Brofferio, M. Peigné, Thi da Cam Pham
{"title":"On the affine recursion on R_d+ in the critical case","authors":"S. Brofferio, M. Peigné, Thi da Cam Pham","doi":"10.30757/ALEA.V18-37","DOIUrl":null,"url":null,"abstract":"We fix d ≥ 2 and denote S the semi-group of d× d matrices with non negative entries. We consider a sequence (An, Bn)n≥1 of i. i. d. random variables with values in S × R+ and study the asymptotic behavior of the Markov chain (Xn)n≥0 on R+ defined by: ∀n ≥ 0, Xn+1 = An+1Xn +Bn+1, where X0 is a fixed random variable. We assume that the Lyapunov exponent of the matrices An equals 0 and prove, under quite general hypotheses, that there exists a unique (infinite) Radon measure λ on (R+)d which is invariant for the chain (Xn)n≥0. The existence of λ relies on a recent work by T.D.C. Pham about fluctuations of the norm of product of random matrices [16]. Its unicity is a consequence of a general property, called “local contractivity”, highlighted about 20 years ago by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine recursion [1] .","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"2012 1","pages":"1007"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.V18-37","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We fix d ≥ 2 and denote S the semi-group of d× d matrices with non negative entries. We consider a sequence (An, Bn)n≥1 of i. i. d. random variables with values in S × R+ and study the asymptotic behavior of the Markov chain (Xn)n≥0 on R+ defined by: ∀n ≥ 0, Xn+1 = An+1Xn +Bn+1, where X0 is a fixed random variable. We assume that the Lyapunov exponent of the matrices An equals 0 and prove, under quite general hypotheses, that there exists a unique (infinite) Radon measure λ on (R+)d which is invariant for the chain (Xn)n≥0. The existence of λ relies on a recent work by T.D.C. Pham about fluctuations of the norm of product of random matrices [16]. Its unicity is a consequence of a general property, called “local contractivity”, highlighted about 20 years ago by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine recursion [1] .
临界情况下R_d+上的仿射递归
我们定d≥2,并将S记为具有非负项的d× d矩阵的半群。我们考虑一个序列(An, Bn)n≥1,包含i. i. d个值在S × R+中的随机变量,并研究马尔可夫链(Xn)n≥0在R+上的渐近性:∀n≥0,Xn+1 = An+1Xn +Bn+1,其中X0是一个固定的随机变量。我们假设矩阵An的Lyapunov指数等于0,并在相当一般的假设下证明在(R+)d上存在一个唯一的(无限的)Radon测度λ,该测度对于链(Xn)n≥0是不变的。λ的存在依赖于T.D.C. Pham最近关于随机矩阵乘积范数涨落的研究[16]。它的唯一性是一个一般性质的结果,称为“局部收缩性”,大约20年前由M. babilllot, Ph. Bougerol和L. Elie在一维仿射递推的情况下强调[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信