{"title":"Nordhaus-Gaddum type inequalities for the distinguishing index","authors":"M. Pilsniak","doi":"10.26493/1855-3974.2173.71A","DOIUrl":null,"url":null,"abstract":"The distinguishing index of a graph G, denoted by D′(G), is the least number of colours in an edge colouring of G not preserved by any nontrivial automorphism. This invariant is defined for any graph without K2 as a connected component and without two isolated vertices, and such a graph is called admissible. We prove the Nordhaus-Gaddum type relation: 2 ≤ D′(G) +D′(G) ≤ ∆(G) + 2 for every admissible connected graph G of order |G| ≥ 7 such that G is also admissible.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"142 1","pages":"223-231"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2173.71A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The distinguishing index of a graph G, denoted by D′(G), is the least number of colours in an edge colouring of G not preserved by any nontrivial automorphism. This invariant is defined for any graph without K2 as a connected component and without two isolated vertices, and such a graph is called admissible. We prove the Nordhaus-Gaddum type relation: 2 ≤ D′(G) +D′(G) ≤ ∆(G) + 2 for every admissible connected graph G of order |G| ≥ 7 such that G is also admissible.