Exploiting Diversity in Android TLS Implementations for Mobile App Traffic Classification

Satadal Sengupta, Niloy Ganguly, Pradipta De, Sandip Chakraborty
{"title":"Exploiting Diversity in Android TLS Implementations for Mobile App Traffic Classification","authors":"Satadal Sengupta, Niloy Ganguly, Pradipta De, Sandip Chakraborty","doi":"10.1145/3308558.3313738","DOIUrl":null,"url":null,"abstract":"Network traffic classification is an important tool for network administrators in enabling monitoring and service provisioning. Traditional techniques employed in classifying traffic do not work well for mobile app traffic due to lack of unique signatures. Encryption renders this task even more difficult since packet content is no longer available to parse. More recent techniques based on statistical analysis of parameters such as packet-size and arrival time of packets have shown promise; such techniques have been shown to classify traffic from a small number of applications with a high degree of accuracy. However, we show that when employed to a large number of applications, the performance falls short of satisfactory. In this paper, we propose a novel set of bit-sequence based features which exploit differences in randomness of data generated by different applications. These differences originating due to dissimilarities in encryption implementations by different applications leave footprints on the data generated by them. We validate that these features can differentiate data encrypted with various ciphers (89% accuracy) and key-sizes (83% accuracy). Our evaluation shows that such features can not only differentiate traffic originating from different categories of mobile apps (90% accuracy), but can also classify 175 individual applications with 95% accuracy.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Network traffic classification is an important tool for network administrators in enabling monitoring and service provisioning. Traditional techniques employed in classifying traffic do not work well for mobile app traffic due to lack of unique signatures. Encryption renders this task even more difficult since packet content is no longer available to parse. More recent techniques based on statistical analysis of parameters such as packet-size and arrival time of packets have shown promise; such techniques have been shown to classify traffic from a small number of applications with a high degree of accuracy. However, we show that when employed to a large number of applications, the performance falls short of satisfactory. In this paper, we propose a novel set of bit-sequence based features which exploit differences in randomness of data generated by different applications. These differences originating due to dissimilarities in encryption implementations by different applications leave footprints on the data generated by them. We validate that these features can differentiate data encrypted with various ciphers (89% accuracy) and key-sizes (83% accuracy). Our evaluation shows that such features can not only differentiate traffic originating from different categories of mobile apps (90% accuracy), but can also classify 175 individual applications with 95% accuracy.
利用Android TLS实现的多样性实现移动应用流量分类
网络流分类是网络管理员实现监控和业务发放的重要工具。由于缺乏唯一签名,传统的流量分类技术不能很好地用于移动应用流量。加密使这项任务更加困难,因为数据包内容不再可用于解析。基于诸如数据包大小和数据包到达时间等参数的统计分析的最新技术显示出了希望;这种技术已经被证明可以对来自少数应用程序的流量进行高度精确的分类。然而,我们表明,当使用到大量的应用程序时,性能不尽如人意。在本文中,我们提出了一套新的基于位序列的特征,利用不同应用程序生成的数据的随机性差异。这些差异是由于不同应用程序在加密实现上的不同而产生的,会在它们生成的数据上留下痕迹。我们验证了这些特征可以区分使用各种密码(89%准确率)和密钥大小(83%准确率)加密的数据。我们的评估表明,这些功能不仅可以区分来自不同类别移动应用程序的流量(准确率为90%),还可以对175个单独的应用程序进行分类,准确率为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信