The Comparison of Estimation Methods for the Four-Parameter Logistic Item Response Theory Model

IF 0.6 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY
Ö. K. Kalkan
{"title":"The Comparison of Estimation Methods for the Four-Parameter Logistic Item Response Theory Model","authors":"Ö. K. Kalkan","doi":"10.1080/15366367.2021.1897398","DOIUrl":null,"url":null,"abstract":"ABSTRACT The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM), Quasi-Monte Carlo EM (QMCEM), and Metropolis-Hastings Robbins-Monro (MH-RM) estimation methods for the item parameters in the 4PL IRT model under the manipulated study conditions, including the number of factors, the correlation between factors, and test length. The results indicated that there was no method to be recommended as the best one among the three estimation algorithms for the estimation of 4PL item parameters accurately across all study conditions. However, using the MH-RM algorithm for 4PL model item parameter estimation can be suggested when the number of factors is 2 or 3. In addition, it may be advised to prefer long test lengths rather than shorter test lengths (n = 24), as three algorithms provide better item parameter estimates at long test lengths (n = 48).","PeriodicalId":46596,"journal":{"name":"Measurement-Interdisciplinary Research and Perspectives","volume":"7 1","pages":"73 - 90"},"PeriodicalIF":0.6000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement-Interdisciplinary Research and Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2021.1897398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT The four-parameter logistic (4PL) Item Response Theory (IRT) model has recently been reconsidered in the literature due to the advances in the statistical modeling software and the recent developments in the estimation of the 4PL IRT model parameters. The current simulation study evaluated the performance of expectation-maximization (EM), Quasi-Monte Carlo EM (QMCEM), and Metropolis-Hastings Robbins-Monro (MH-RM) estimation methods for the item parameters in the 4PL IRT model under the manipulated study conditions, including the number of factors, the correlation between factors, and test length. The results indicated that there was no method to be recommended as the best one among the three estimation algorithms for the estimation of 4PL item parameters accurately across all study conditions. However, using the MH-RM algorithm for 4PL model item parameter estimation can be suggested when the number of factors is 2 or 3. In addition, it may be advised to prefer long test lengths rather than shorter test lengths (n = 24), as three algorithms provide better item parameter estimates at long test lengths (n = 48).
四参数Logistic项目反应理论模型估计方法的比较
由于统计建模软件的进步和最近在估计4PL IRT模型参数方面的发展,四参数逻辑(4PL)项目反应理论(IRT)模型最近在文献中被重新考虑。本模拟研究评估了期望最大化(EM)、准蒙特卡罗EM (QMCEM)和Metropolis-Hastings Robbins-Monro (hh - rm)三种方法在操纵研究条件下对4PL IRT模型中项目参数的估计性能,包括因素数量、因素之间的相关性和测试长度。结果表明,在三种估计算法中,没有一种方法可以在所有研究条件下准确估计第4物流项目参数。然而,当因子数为2或3时,可以建议使用MH-RM算法进行4PL模型项目参数估计。此外,可以建议选择较长的测试长度而不是较短的测试长度(n = 24),因为三种算法在较长的测试长度(n = 48)下提供了更好的项目参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement-Interdisciplinary Research and Perspectives
Measurement-Interdisciplinary Research and Perspectives SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信