The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$

Q4 Mathematics
O. Devillers, Ross Hemsley
{"title":"The worst visibility walk in a random Delaunay triangulation is $O(\\sqrt{n})$","authors":"O. Devillers, Ross Hemsley","doi":"10.20382/jocg.v7i1a16","DOIUrl":null,"url":null,"abstract":"We show that the memoryless routing algorithms Greedy Walk, Compass Walk, and all variants of visibility walk based on orientation predicates are asymptotically optimal in the average case on the Delaunay triangulation. More specifically, we consider the Delaunay triangulation of an unbounded Poisson point process of unit rate and demonstrate that, for any pair of vertices $(s,t)$ inside $[0,n]^2$, the ratio between the longest and shortest visibility walks between $s$ and $t$ is bounded by a constant with probability converging to one (as long as the vertices are sufficiently far apart). As a corollary, it follows that the worst-case path has $O(\\sqrt{n}\\,)$ steps in the limiting case, under the same conditions. Our results have applications in routing in mobile networks and also settle a long-standing conjecture in point location using walking algorithms. Our proofs use techniques from percolation theory and stochastic geometry.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"30 1","pages":"332-359"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

We show that the memoryless routing algorithms Greedy Walk, Compass Walk, and all variants of visibility walk based on orientation predicates are asymptotically optimal in the average case on the Delaunay triangulation. More specifically, we consider the Delaunay triangulation of an unbounded Poisson point process of unit rate and demonstrate that, for any pair of vertices $(s,t)$ inside $[0,n]^2$, the ratio between the longest and shortest visibility walks between $s$ and $t$ is bounded by a constant with probability converging to one (as long as the vertices are sufficiently far apart). As a corollary, it follows that the worst-case path has $O(\sqrt{n}\,)$ steps in the limiting case, under the same conditions. Our results have applications in routing in mobile networks and also settle a long-standing conjecture in point location using walking algorithms. Our proofs use techniques from percolation theory and stochastic geometry.
在随机Delaunay三角剖分中,最差的可见度是$O(\sqrt{n})$
在Delaunay三角剖分的平均情况下,无内存路由算法Greedy Walk、Compass Walk和所有基于方向谓词的可视性Walk的变体都是渐近最优的。更具体地说,我们考虑了单位速率的无界泊松点过程的Delaunay三角化,并证明了对于$[0,n]^2$内的任意一对顶点$(s,t)$, $s$和$t$之间的最长和最短可见行走之间的比率由一个概率收敛于1的常数所限定(只要顶点之间足够远)。作为推论,在相同条件下,最坏情况下的路径在极限情况下有$O(\sqrt{n}\,)$步长。我们的研究结果在移动网络的路由中有应用,也解决了一个长期存在的猜想,即使用行走算法进行点定位。我们的证明使用渗透理论和随机几何的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信