A zero-one law for logic with a fixed-point operator

Q4 Mathematics
Andreas Blass, Yuri Gurevich, Dexter Kozen
{"title":"A zero-one law for logic with a fixed-point operator","authors":"Andreas Blass,&nbsp;Yuri Gurevich,&nbsp;Dexter Kozen","doi":"10.1016/S0019-9958(85)80027-9","DOIUrl":null,"url":null,"abstract":"<div><p>The logic obtained by adding the least-fixed-point operator to first-order logic was proposed as a query language by <span>Aho and Ullman (<em>in</em> “Proc. 6th ACM Sympos. on Principles of Programming Languages,” 1979, pp. 110–120)</span> and has been studied, particularly in connection with finite models, by numerous authors. We extend to this logic, and to the logic containing the more powerful iterative-fixed-point operator, the zero-one law proved for first-order logic in (<span>Glebskii, Kogan, Liogonki, and Talanov (1969)</span>, <em>Kibernetika</em> <strong>2</strong>, 31–42; <span>Fagin (1976)</span>, <em>J. Symbolic Logic</em> <strong>41</strong>, 50–58). For any sentence <em>φ</em> of the extend logic, the proportion of models of <em>φ</em> among all structures with universe {1,2,…, <em>n</em>} approaches 0 or 1 as <em>n</em> tends to infinity. We also show that the problem of deciding, for any <em>φ</em>, whether this proportion approaches 1 is complete for exponential time, if we consider only <em>φ</em>'s with a fixed finite vocabulary (or vocabularies of bounded arity) and complete for double-exponential time if φ is unrestricted. In addition, we establish some related results.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"67 1","pages":"Pages 70-90"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80027-9","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995885800279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 81

Abstract

The logic obtained by adding the least-fixed-point operator to first-order logic was proposed as a query language by Aho and Ullman (in “Proc. 6th ACM Sympos. on Principles of Programming Languages,” 1979, pp. 110–120) and has been studied, particularly in connection with finite models, by numerous authors. We extend to this logic, and to the logic containing the more powerful iterative-fixed-point operator, the zero-one law proved for first-order logic in (Glebskii, Kogan, Liogonki, and Talanov (1969), Kibernetika 2, 31–42; Fagin (1976), J. Symbolic Logic 41, 50–58). For any sentence φ of the extend logic, the proportion of models of φ among all structures with universe {1,2,…, n} approaches 0 or 1 as n tends to infinity. We also show that the problem of deciding, for any φ, whether this proportion approaches 1 is complete for exponential time, if we consider only φ's with a fixed finite vocabulary (or vocabularies of bounded arity) and complete for double-exponential time if φ is unrestricted. In addition, we establish some related results.

具有不动点算子的逻辑0 - 1定律
在一阶逻辑中加入最小不动点算子得到的逻辑是由Aho和Ullman (Proc. 6th ACM Sympos)提出的查询语言。《编程语言原理》,1979年,第110-120页),并已被许多作者研究,特别是与有限模型有关。我们将此逻辑扩展到包含更强大的迭代不动点算子的逻辑,即在(Glebskii, Kogan, Liogonki, and Talanov (1969), Kibernetika 2,31 - 42)中证明的一阶逻辑的0 - 1定律;费金(1976),符号学(1),50-58。对于扩展逻辑的任意句子φ,当n趋于无穷时,在宇宙{1,2,…,n}的所有结构中φ的模型所占的比例趋近于0或1。我们还证明,如果我们只考虑φ s具有固定的有限词汇(或有界的词汇),并且如果φ是不受限制的,则决定对于任何φ,这个比例是否接近于1的问题对于指数时间是完备的,并且对于双指数时间是完备的。此外,我们建立了一些相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信