Evaluation metrics for anomaly detection algorithms in time-series

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
György Kovács, G. Sebestyen, A. Hangan
{"title":"Evaluation metrics for anomaly detection algorithms in time-series","authors":"György Kovács, G. Sebestyen, A. Hangan","doi":"10.2478/ausi-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract Time-series are ordered sequences of discrete-time data. Due to their temporal dimension, anomaly detection techniques used in time-series have to take into consideration time correlations and other time-related particularities. Generally, in order to evaluate the quality of an anomaly detection technique, the confusion matrix and its derived metrics such as precision and recall are used. These metrics, however, do not take this temporal dimension into consideration. In this paper, we propose three metrics that can be used to evaluate the quality of a classification, while accounting for the temporal dimension found in time-series data.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"10 1","pages":"113 - 130"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Time-series are ordered sequences of discrete-time data. Due to their temporal dimension, anomaly detection techniques used in time-series have to take into consideration time correlations and other time-related particularities. Generally, in order to evaluate the quality of an anomaly detection technique, the confusion matrix and its derived metrics such as precision and recall are used. These metrics, however, do not take this temporal dimension into consideration. In this paper, we propose three metrics that can be used to evaluate the quality of a classification, while accounting for the temporal dimension found in time-series data.
时间序列异常检测算法的评价指标
时间序列是离散时间数据的有序序列。由于时间序列的时间维度,用于时间序列的异常检测技术必须考虑时间相关性和其他与时间相关的特性。通常,为了评估异常检测技术的质量,通常使用混淆矩阵及其派生的度量,如精度和召回率。然而,这些度量并没有考虑到这个时间维度。在本文中,我们提出了三个可用于评估分类质量的指标,同时考虑到时间序列数据中的时间维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信