Impulse controllability and impulse elimination in rectangular descriptor systems

V. Mishra, N. K. Tomar, M. Gupta
{"title":"Impulse controllability and impulse elimination in rectangular descriptor systems","authors":"V. Mishra, N. K. Tomar, M. Gupta","doi":"10.1109/ICCAS.2015.7364930","DOIUrl":null,"url":null,"abstract":"In this paper, a decomposition of system matrices of linear time invariant rectangular descriptor systems is proposed. Using the decomposition, a technique is developed to check the impulse controllability for rectangular descriptor systems. Necessary and sufficient conditions are stated and proved to design a proportional plus derivative feedback such that the closed loop system is free of impulse. Examples are given to illustrate the presented theory.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"2016 1","pages":"316-320"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a decomposition of system matrices of linear time invariant rectangular descriptor systems is proposed. Using the decomposition, a technique is developed to check the impulse controllability for rectangular descriptor systems. Necessary and sufficient conditions are stated and proved to design a proportional plus derivative feedback such that the closed loop system is free of impulse. Examples are given to illustrate the presented theory.
矩形广义系统中的脉冲可控性和脉冲消除
本文提出了线性时不变矩形广义系统的系统矩阵分解方法。利用这种分解,提出了一种检验矩形广义系统脉冲可控性的方法。给出并证明了设计出闭环系统无脉冲的比例加导数反馈的充分必要条件。举例说明了所提出的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信