Texture classification from single uncalibrated images: Random matrix theory approach

E. Nadimi, J. Herp, M. M. Buijs, V. Blanes-Vidal
{"title":"Texture classification from single uncalibrated images: Random matrix theory approach","authors":"E. Nadimi, J. Herp, M. M. Buijs, V. Blanes-Vidal","doi":"10.1109/MLSP.2017.8168115","DOIUrl":null,"url":null,"abstract":"We studied the problem of classifying textured-materials from their single-imaged appearance, under general viewing and illumination conditions, using the theory of random matrices. To evaluate the performance of our algorithm, two distinct databases of images were used: The CUReT database and our database of colorectal polyp images collected from patients undergoing colon capsule endoscopy for early cancer detection. During the learning stage, our classifier algorithm established the universality laws for the empirical spectral density of the largest singular value and normalized largest singular value of the image intensity matrix adapted to the eigenvalues of the information-plus-noise model. We showed that these two densities converge to the generalized extreme value (GEV-Frechet) and Gaussian G1 distribution with rate O(N1/2), respectively. To validate the algorithm, we introduced a set of unseen images to the algorithm. Misclassification rate of approximately 1%–6%, depending on the database, was obtained, which is superior to the reported values of 5%–45% in previous research studies.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"34 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We studied the problem of classifying textured-materials from their single-imaged appearance, under general viewing and illumination conditions, using the theory of random matrices. To evaluate the performance of our algorithm, two distinct databases of images were used: The CUReT database and our database of colorectal polyp images collected from patients undergoing colon capsule endoscopy for early cancer detection. During the learning stage, our classifier algorithm established the universality laws for the empirical spectral density of the largest singular value and normalized largest singular value of the image intensity matrix adapted to the eigenvalues of the information-plus-noise model. We showed that these two densities converge to the generalized extreme value (GEV-Frechet) and Gaussian G1 distribution with rate O(N1/2), respectively. To validate the algorithm, we introduced a set of unseen images to the algorithm. Misclassification rate of approximately 1%–6%, depending on the database, was obtained, which is superior to the reported values of 5%–45% in previous research studies.
单张未校准图像的纹理分类:随机矩阵理论方法
我们研究了在一般视觉和光照条件下,利用随机矩阵理论从纹理材料的单图像外观进行分类的问题。为了评估我们的算法的性能,我们使用了两个不同的图像数据库:CUReT数据库和我们的结肠息肉图像数据库,这些图像来自于接受结肠胶囊内窥镜检查以进行早期癌症检测的患者。在学习阶段,我们的分类器算法建立了适应于信息加噪声模型特征值的图像强度矩阵的最大奇异值和归一化最大奇异值的经验谱密度的通用性规律。我们证明了这两个密度分别收敛于广义极值(GEV-Frechet)和高斯G1分布,速率为0 (N1/2)。为了验证算法,我们引入了一组未见过的图像到算法中。根据数据库的不同,得到的误分类率约为1%-6%,优于以往研究报告的5%-45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信