Clustering of football players based on performance data and aggregated clustering validity indexes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Serhat Emre Akhanli, C. Hennig
{"title":"Clustering of football players based on performance data and aggregated clustering validity indexes","authors":"Serhat Emre Akhanli, C. Hennig","doi":"10.1515/jqas-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. “Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes.” Statistics and Computing 30 (5): 1523–44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team’s composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2022-0037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. “Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes.” Statistics and Computing 30 (5): 1523–44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team’s composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.
基于成绩数据和聚类效度指标的足球运动员聚类
摘要本文采用混合类型变量分析了2014-15赛季欧洲八大联赛足球运动员的表现数据。我们根据量身定制的不相似性度量对这些数据进行聚类。为了在许多可用的聚类方法之间做出决定并选择适当数量的聚类,我们使用了Akhanli和Hennig(2020)的方法。通过校准聚类有效性指标的聚合来比较聚类和聚类数量。统计与计算30(5):1523-44。这是基于几个验证标准,这些标准涉及聚类的不同期望特征。这些特征是根据聚类的目的选择的,这允许定义一个合适的验证指数作为衡量理想特征的校准单个指数的加权平均值。我们得到两种不同的聚类。第一种方法是将数据集划分为本质上不同的球员的主要组,这可以用于分析球队的组成。第二种方法将数据集分成许多小集群(平均10个玩家),这可以用于寻找与给定玩家非常相似的玩家。深入讨论了这些聚类所需的特征。对第二次聚类的标准进行加权是通过对足球专家的调查得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信