J. Juno, M. Swisdak, J. TenBarge, V. Skoutnev, A. Hakim
{"title":"Noise-induced magnetic field saturation in kinetic simulations","authors":"J. Juno, M. Swisdak, J. TenBarge, V. Skoutnev, A. Hakim","doi":"10.1017/S0022377820000707","DOIUrl":null,"url":null,"abstract":"Monte Carlo methods are often employed to numerically integrate kinetic equations, such as the particle-in-cell method for the plasma kinetic equation, but these methods suffer from the introduction of counting noise to the solution. We report on a cautionary tale of counting noise modifying the nonlinear saturation of kinetic instabilities driven by unstable beams of plasma. We find a saturated magnetic field in under-resolved particle-in-cell simulations due to the sampling error in the current density. The noise-induced magnetic field is anomalous, as the magnetic field damps away in continuum kinetic and increased particle count particle-in-cell simulations. This modification of the saturated state has implications for a broad array of astrophysical phenomena beyond the simple plasma system considered here, and it stresses the care that must be taken when using particle methods for kinetic equations.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0022377820000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Monte Carlo methods are often employed to numerically integrate kinetic equations, such as the particle-in-cell method for the plasma kinetic equation, but these methods suffer from the introduction of counting noise to the solution. We report on a cautionary tale of counting noise modifying the nonlinear saturation of kinetic instabilities driven by unstable beams of plasma. We find a saturated magnetic field in under-resolved particle-in-cell simulations due to the sampling error in the current density. The noise-induced magnetic field is anomalous, as the magnetic field damps away in continuum kinetic and increased particle count particle-in-cell simulations. This modification of the saturated state has implications for a broad array of astrophysical phenomena beyond the simple plasma system considered here, and it stresses the care that must be taken when using particle methods for kinetic equations.