Extremal and Ramsey results on graph blowups

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Fox, Sammy Luo, Yuval Wigderson
{"title":"Extremal and Ramsey results on graph blowups","authors":"J. Fox, Sammy Luo, Yuval Wigderson","doi":"10.4310/joc.2021.v12.n1.a1","DOIUrl":null,"url":null,"abstract":"Recently, Souza introduced blowup Ramsey numbers as a generalization of bipartite Ramsey numbers. For graphs $G$ and $H$, say $G\\overset{r}{\\longrightarrow} H$ if every $r$-edge-coloring of $G$ contains a monochromatic copy of $H$. Let $H[t]$ denote the $t$-blowup of $H$. Then the blowup Ramsey number of $G,H,r,$ and $t$ is defined as the minimum $n$ such that $G[n] \\overset{r}{\\longrightarrow} H[t]$. Souza proved upper and lower bounds on $n$ that are exponential in $t$, and conjectured that the exponential constant does not depend on $G$. We prove that the dependence on $G$ in the exponential constant is indeed unnecessary, but conjecture that some dependence on $G$ is unavoidable. \nAn important step in both Souza's proof and ours is a theorem of Nikiforov, which says that if a graph contains a constant fraction of the possible copies of $H$, then it contains a blowup of $H$ of logarithmic size. We also provide a new proof of this theorem with a better quantitative dependence.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"62 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, Souza introduced blowup Ramsey numbers as a generalization of bipartite Ramsey numbers. For graphs $G$ and $H$, say $G\overset{r}{\longrightarrow} H$ if every $r$-edge-coloring of $G$ contains a monochromatic copy of $H$. Let $H[t]$ denote the $t$-blowup of $H$. Then the blowup Ramsey number of $G,H,r,$ and $t$ is defined as the minimum $n$ such that $G[n] \overset{r}{\longrightarrow} H[t]$. Souza proved upper and lower bounds on $n$ that are exponential in $t$, and conjectured that the exponential constant does not depend on $G$. We prove that the dependence on $G$ in the exponential constant is indeed unnecessary, but conjecture that some dependence on $G$ is unavoidable. An important step in both Souza's proof and ours is a theorem of Nikiforov, which says that if a graph contains a constant fraction of the possible copies of $H$, then it contains a blowup of $H$ of logarithmic size. We also provide a new proof of this theorem with a better quantitative dependence.
图放大的极值和拉姆齐结果
最近,Souza引入了放大拉姆齐数作为二部拉姆齐数的推广。对于图$G$和$H$,如果$G$的每个$r$边着色包含$H$的单色副本,则称$G\overset{r}{\ lonightarrow} H$。设$H[t]$表示$H$的$t$放大。然后将$G,H,r,$和$t$的放大拉姆齐数定义为使$G[n] \覆盖{r}{\ longightarrow} H[t]$的最小值$n$。Souza证明了$n$的上界和下界是$t$的指数,并推测指数常数不依赖于$G$。我们证明了指数常数中对$G$的依赖确实是不必要的,但我们猜想对$G$的依赖是不可避免的。在Souza的证明和我们的证明中,一个重要的步骤是Nikiforov的定理,它说如果一个图包含H$的可能副本的常数部分,那么它包含一个对数大小的H$的放大。我们还提供了一个新的证明,它具有更好的数量依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信