COMPUTATIONAL TIME REDUCTION OF COMPOSITIONAL RESERVOIR SIMULATION MODEL WITH WAG INJECTION AND GAS RECYCLE SCHEME THROUGH NUMERICAL TUNING OF SUBMODELS

S. F. Mello, G. Avansi, V. Rios, D. Schiozer
{"title":"COMPUTATIONAL TIME REDUCTION OF COMPOSITIONAL RESERVOIR SIMULATION MODEL WITH WAG INJECTION AND GAS RECYCLE SCHEME THROUGH NUMERICAL TUNING OF SUBMODELS","authors":"S. F. Mello, G. Avansi, V. Rios, D. Schiozer","doi":"10.5419/bjpg2022-0004","DOIUrl":null,"url":null,"abstract":"This work shows a procedure to build fast and reliable numerical models with WAG-CO2-rich injection scheme. This novel and practical approach to numerical tuning high-complexity reservoir models can save days or even months of work. Improving step 2 of the 12-step reservoir characterization and modeling methodology proposed by Schiozer et al. (2015) leads to an optimization of the numerical control of the model based on the critical compositional numerical parameters and performance diagnostics. We show the results of a probabilistic risk analysis application. For the complex case scenario presented, results show that applying the proposed technique can save roughly 80% of the total time spent to perform a risk study. Furthermore, we found that time saving tends to increase as the number of simulations increases. This work improvement comes from making a methodology that includes both compositional and black-oil numerical solver parameters in every step of the numerical tuning optimization, rendering a broader and more robust method.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/bjpg2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work shows a procedure to build fast and reliable numerical models with WAG-CO2-rich injection scheme. This novel and practical approach to numerical tuning high-complexity reservoir models can save days or even months of work. Improving step 2 of the 12-step reservoir characterization and modeling methodology proposed by Schiozer et al. (2015) leads to an optimization of the numerical control of the model based on the critical compositional numerical parameters and performance diagnostics. We show the results of a probabilistic risk analysis application. For the complex case scenario presented, results show that applying the proposed technique can save roughly 80% of the total time spent to perform a risk study. Furthermore, we found that time saving tends to increase as the number of simulations increases. This work improvement comes from making a methodology that includes both compositional and black-oil numerical solver parameters in every step of the numerical tuning optimization, rendering a broader and more robust method.
通过对子模型的数值调整,减少了注wag和气循环方案的储层模拟模型的计算时间
本文的工作为建立快速可靠的wag -富co2注入方案的数值模型提供了一种方法。这种新颖实用的方法对高复杂性油藏模型进行数值调整,可以节省数天甚至数月的工作。Schiozer等人(2015)提出的12步油藏表征和建模方法的第2步改进导致基于关键成分数值参数和性能诊断的模型数控优化。我们展示了概率风险分析应用程序的结果。对于所提出的复杂案例场景,结果表明,应用所提出的技术可以节省大约80%的执行风险研究的总时间。此外,我们发现随着模拟次数的增加,节省的时间往往会增加。这项工作的改进来自于在数值调谐优化的每一步中都包含组分和黑油数值求解器参数的方法,使方法更广泛,更健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信