M. T. Al-Murayri, A. Hassan, I. Hénaut, C. Marliere, A. Mouret, D. Lalanne-Aulet, Juan-Pablo Sanchez, G. Suzanne
{"title":"Surfactant-Polymer Feasibility for a Sandstone Reservoir in Kuwait. Successful Integrated Approach from Laboratory to Pilot Design","authors":"M. T. Al-Murayri, A. Hassan, I. Hénaut, C. Marliere, A. Mouret, D. Lalanne-Aulet, Juan-Pablo Sanchez, G. Suzanne","doi":"10.2118/194979-MS","DOIUrl":null,"url":null,"abstract":"\n This study presents an integrated approach to design a fit-for-purpose surfactant-polymer process for a major sandstone reservoir in Kuwait. The adopted procedure is described covering core flood experiments through pilot design using a reservoir simulation tool that was calibrated using laboratory results.\n The surfactant-polymer formulation design was already described in another publication (SPE-183933). In this paper, further optimization of the chemical formulation is described, including core floods to minimize the quantity of the injected chemicals while maintaining high oil recovery. Formulation robustness and its impacts on water-oil separation at the surface are also evaluated. Furthermore, reservoir simulation was utilized to design a field trial. At first, the parameters that were used to model surfactant-polymer performance were calibrated using core flood results. Then, the reservoir simulation model was used at a larger scale to identify the most appropriate injection sequence for field implementation.\n The performance of the designed surfactant-polymer formulation is promising. Core flood experiments demonstrate that the injection of the chemical formulation recovers more than 85% of the remaining oil after waterflooding, while having relatively low adsorption values. The designed formulation was also found to be quite resilient to variations in divalent cations concentration, water-oil ratio and oil composition. It was noticed that rock facies heterogeneity has a limited effect on surfactant adsorption. Favorable phase behavior properties were maintained around reservoir temperature and the formulation exhibited good aqueous stability between reservoir and surface temperatures. EOR parameters including salinity-dependent surfactant adsorption, capillary desaturation and polymer-induced water mobility reduction were calibrated in the reservoir simulation model using core flood data. Larger scale reservoir simulation enabled the design of a suitable injection sequence including a main surfactant-polymer slug followed by a polymer slug. The main variables of the design, including slug injection durations, chemical concentrations and pattern size were optimized through numerous sensitivity scenarios. Using a 5-spot pattern with a spacing of 75 m, surfactant-polymer injection effects should be observed within a short timeframe of around 14 months.\n This paper describes a successful approach to design a surfactant-polymer process, integrating laboratory experiments and reservoir simulation. This work paves the way for a 5-spot EOR pilot involving a major sandstone reservoir and will undoubtedly provide valuable insights for chemical EOR applications in similar reservoirs elsewhere.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194979-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study presents an integrated approach to design a fit-for-purpose surfactant-polymer process for a major sandstone reservoir in Kuwait. The adopted procedure is described covering core flood experiments through pilot design using a reservoir simulation tool that was calibrated using laboratory results.
The surfactant-polymer formulation design was already described in another publication (SPE-183933). In this paper, further optimization of the chemical formulation is described, including core floods to minimize the quantity of the injected chemicals while maintaining high oil recovery. Formulation robustness and its impacts on water-oil separation at the surface are also evaluated. Furthermore, reservoir simulation was utilized to design a field trial. At first, the parameters that were used to model surfactant-polymer performance were calibrated using core flood results. Then, the reservoir simulation model was used at a larger scale to identify the most appropriate injection sequence for field implementation.
The performance of the designed surfactant-polymer formulation is promising. Core flood experiments demonstrate that the injection of the chemical formulation recovers more than 85% of the remaining oil after waterflooding, while having relatively low adsorption values. The designed formulation was also found to be quite resilient to variations in divalent cations concentration, water-oil ratio and oil composition. It was noticed that rock facies heterogeneity has a limited effect on surfactant adsorption. Favorable phase behavior properties were maintained around reservoir temperature and the formulation exhibited good aqueous stability between reservoir and surface temperatures. EOR parameters including salinity-dependent surfactant adsorption, capillary desaturation and polymer-induced water mobility reduction were calibrated in the reservoir simulation model using core flood data. Larger scale reservoir simulation enabled the design of a suitable injection sequence including a main surfactant-polymer slug followed by a polymer slug. The main variables of the design, including slug injection durations, chemical concentrations and pattern size were optimized through numerous sensitivity scenarios. Using a 5-spot pattern with a spacing of 75 m, surfactant-polymer injection effects should be observed within a short timeframe of around 14 months.
This paper describes a successful approach to design a surfactant-polymer process, integrating laboratory experiments and reservoir simulation. This work paves the way for a 5-spot EOR pilot involving a major sandstone reservoir and will undoubtedly provide valuable insights for chemical EOR applications in similar reservoirs elsewhere.