A novel hyperspectral image clustering method based on spectral unmixing

Hamed Gholizadeh, Mohammad Javad Valdan Zoej, B. Mojaradi
{"title":"A novel hyperspectral image clustering method based on spectral unmixing","authors":"Hamed Gholizadeh, Mohammad Javad Valdan Zoej, B. Mojaradi","doi":"10.1109/AERO.2012.6187196","DOIUrl":null,"url":null,"abstract":"In this paper, a novel hyperspectral image clustering procedure, which is based upon the Fully Constrained Least Squares (FCLS) spectral unmixing method, is proposed. The proposed clustering method consists of three major steps: endmember extraction, unmixing procedure and hardening process via the winner-takes-all approach. To estimate the optimal number of endmembers, instead of using the background signal subspace identification methods, the number of endmembers is varied in a predefined interval and the commonly accepted VCA (Vertex Component Analysis) algorithm is employed to extract the endmembers' spectra. At each iteration, the bandwise Root Mean Square Error (RMSE) between the reconstructed image, obtained from estimated fractions. and the original image is computed and the mean of all bandwise RMSEs is regarded as a measure to choose the optimum number of endmembers. Experiments conducted on the Indian Pines challenging dataset proved the superiority of proposed method over the K-Means and Fuzzy c-Means methods in terms of the widely used Adjusted Rand Index measure.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"29 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel hyperspectral image clustering procedure, which is based upon the Fully Constrained Least Squares (FCLS) spectral unmixing method, is proposed. The proposed clustering method consists of three major steps: endmember extraction, unmixing procedure and hardening process via the winner-takes-all approach. To estimate the optimal number of endmembers, instead of using the background signal subspace identification methods, the number of endmembers is varied in a predefined interval and the commonly accepted VCA (Vertex Component Analysis) algorithm is employed to extract the endmembers' spectra. At each iteration, the bandwise Root Mean Square Error (RMSE) between the reconstructed image, obtained from estimated fractions. and the original image is computed and the mean of all bandwise RMSEs is regarded as a measure to choose the optimum number of endmembers. Experiments conducted on the Indian Pines challenging dataset proved the superiority of proposed method over the K-Means and Fuzzy c-Means methods in terms of the widely used Adjusted Rand Index measure.
一种基于光谱分解的高光谱图像聚类方法
提出了一种基于全约束最小二乘(FCLS)光谱解混方法的高光谱图像聚类方法。本文提出的聚类方法包括三个主要步骤:端元提取、解混和硬化过程,采用赢者通吃的方法。为了估计最优端元数目,该方法不使用背景信号子空间识别方法,而是在预定义的区间内改变端元数目,并采用常用的VCA(顶点分量分析)算法提取端元光谱。在每次迭代中,从估计分数中获得重构图像之间的带向均方根误差(RMSE)。对原始图像进行计算,并将各带宽均方根值的平均值作为选择最优端元个数的度量。在Indian Pines具有挑战性的数据集上进行的实验证明,就广泛使用的调整后兰德指数度量而言,所提出的方法优于K-Means和模糊c-Means方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信